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ABSTRACT 
 
 

The direct current produced from the Van de Graaff (VDG) at the Air Force Research 

Laboratory (AFRL) has been measured and analyzed.  The current pulse produced from 

the VDG is oscillatory.  Experimental data show complete damping occurs after 8 

oscillations and within 10-6 seconds.  The spark gap distance and circuit resistance were 

varied to determine if the circuit could convert to an overdamped RLC circuit in order to 

reduce the oscillations. The data establishes that the VDG produces at least 3 full wave 

Fourier frequencies of:  3, 7, and 15 MHz ± 2.0 MHz, while the first oscillation had a 

measured mean frequencies of: 8.56 MHz ± 0.4 MHz for the 3″ spark gap distance; 6″ 

had a measured frequency of 13.95 MHz ± 1.0 MHz, and finally 7″ had a measured value 

of 15.78 MHz ± 1.3 MHz.  The direct current amplitude of the first oscillation also rose 

as a function of spark gap distance from 202 ± 13.82 (A) at a spark gap of 3″ to 354 ± 

22.10 (A) for a spark gap of 8″.  Using the settings explored in this thesis, the VDG has 

some value for use in preliminary Electromagnetic Pulse (EMP) direct current testing, but 

further research is required in order for it to meet MIL-STD-464 validation criteria. 
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ANALYSIS OF A VAN DE GRAAFF GENERATOR FOR EMP DIRECT CURRENT 

SURVIVABILITY TESTING 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

 The rate of change of the electric and magnetic fields of an electromagnetic pulse 

(EMP) event are a threat to electronic equipment.  Equipment that performs critical, time-

urgent command, control, communications, computer, and intelligence (C4I) missions 

must be hardened to operate through EMP events without damage or functional upsets.  

Survivable C4I capabilities are essential to a credible military deterrent [1]. 

 As with conventional weapons, nuclear weapon use is typically associated with 

the blast, shock, and thermal effects.  Additional effects, such as prompt radiation, 

fallout, and EMP are less well understood and need additional study and experimental 

analysis [2].  Therefore, the Van de Graaff (VDG) at the Air Force Research Laboratory 

(AFRL) has been measured and analyzed for future use in EMP direct current 

survivability testing and EMP educational benefit.    

 An abrupt pulse of electromagnetic radiation usually results from certain types of 

high energy explosions, especially a nuclear explosion, or from a suddenly fluctuating 

magnetic field. The resulting rapidly-changing electric and magnetic fields can couple 

with electrical/electronic systems to produce damaging current and voltage surges. 

 The Department of Defense has established “Electromagnetic Environmental 

Effects Requirements for Systems” as described in “MIL STD 464” [3].  In Section 5.5 of 
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MIL STD 464, it gives the parameters established to survive an EMP.  The requirements 

are:  “The system shall meet its operational performance requirements after being 

subjected to the EMP environment.  If an EMP environment is not defined by the 

procuring activity, Figure 1 shall be used.  This requirement is not applicable unless 

otherwise specified by the procuring activity. Compliance shall be verified by system, 

subsystem, and equipment level experiments, analysis, or a combination thereof.” [3]. 

 

 

Figure 1. The MIL-STD-464 default model of a free-field EMP environment is 
shown. The EMP electric field is shown as a function of time [3].  
 
This waveform conforms to the model equation, as shown in Equation (1): 

 / /( ) ( ) ( )at bt t t
o oE t E k e e E k e eτ τ α β− − − −= − = − , (1) 
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where 50000oE =  (V/m), 74 10aα τ= = ×  s-1, 86 10bβ τ= = ×  s-1, 1.3k =  and  

0.258=τ  s [4]. 

 

1.2 Problem Statement and Purpose 

 
 The Van de Graaff (VDG) at the Air Force Research Laboratory (AFRL) at 

Wright-Patterson AFB produces a transient electric field and an oscillating direct current 

via discharge pulses.  The first measured direct current oscillation of the VDG has a rise 

time of 9 915 10 5 10 ( )s− −× ± × .  This is within the validation range compared to the 

military standard (MIL STD) for the free-field EMP environment that has a rise time of

92.5 10 ( )s−× , as shown in Figure 1.  However, the fall time of the pulse produced from 

the VDG is three times too short for validation testing. The VDG’s first direct current 

oscillation was measured to be a sine wave with a fall time of 9 915 10 5 10 ( )s− −× ± ×  while 

the MIL-STD-464 is an overdamped pulse with a fall time of 955 10 ( )s−× .   

 The VDG was found to produce an underdamped oscillating direct current pulse 

that is damped with time.  Therefore, the purpose of this thesis study was to determine if 

the circuit resistance could be overdamped or critically damped; then the current pulse 

would more closely model the MIL-STD-464 free-field EMP environment.   

 This research focused on measuring and evaluating the direct drive current 

(current flowing through the strike plate) that is produced from the VDG.  It was assumed 

that the time dependence of the current must be the same as with the free form electric 

field.  
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 The goal of this research was to analyze the current pulse, and to explore whether 

the system variables of spark gap resistance (which is spark gap length dependent), 

equipment shielding, impedance matching, air breakdown saturation point, and circuit 

series resistance could be changed or modified so as to change the underdamped 

oscillatory current pulse into that of an overdamped system, thus meeting the free-field 

MIL STD EMP environment parameters.  This research relied on the establishment of a 

reliable and repeatable method for obtaining current pulses from the VDG, to produce a 

current that has the potential to be used for direct current EMP survivability testing. 

 

1.3  Overview and General Approach 
 
 
 The research of Dr. Charlesworth and Staniforth has modeled the VDG as an RLC 

(resistor, inductor and capacitor) circuit, which has solutions analogous to the equations 

for a damped harmonic oscillator [5]. Since the current flowing through the spark gap, 

cannot be measured directly, this research was oriented on the direct current at the strike 

plate. The oscillating current, which resulted from an electrostatic discharge of the VDG, 

was examined in order to determine if the oscillations could be depressed via 

overdamping of the RLC circuit.  The purpose of which was to establish the degree to 

which the circuit could be used for direct current EMP survivability testing.  

 To measure the direct current from the strike plate, a current viewing resistor 

(CVR) was attached to the support cable of the strike plate.  The CVR linearly converted 

the current to a voltage signal which was measured on an oscilloscope.  This time 

dependence voltage pulse was analyzed for current amplitude and frequency.  The 
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general layout of the experiment is shown in Figure 2, in which was measured the voltage 

versus time.  Current was then derived from a known value of the resistance of the CVR. 

 With the changing electric field that was generated by the VDG, magnetic fields 

as well as conduction currents were produced.  Equations that are used in evaluating 

EMP are Ohm’s Law (Equation (2)), and two of Maxwell’s equations; Faraday’s Law 

and Ampere’s Law (Equations (3) and (4), respectively).  

  

 

Figure 2. Experiment concept plan for direct current measurement [6]. 
 

 V IR=  (2) 

 B xE
t

∂
− = ∇
∂





 (3) 

 0 0o o
EJ xB
t

µ ε µ ∂
+ = ∇

∂



  

 (4) 
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 Ohm’s Law states that voltage (V), current (I) and resistance (R) are 

interdependent.  Faraday’s Law shows that changing magnetic fields ( B


) are generated 

by electric fields ( E


), and Ampere’s Law says that conduction currents ( cJ


) are 

generated by magnetic fields and/or changing electric fields. 

 For MIL-STD-464, the electromagnetic pulse fields, E


 and B


, are modeled as 

double exponential functions of time dependent fields from the product of a rise and a 

decay function, as shown in Equation (6) that are developed from Equation (5)  [3]. 

 / / / ( 1) / / /

( )
( ) (1 )( ) ( ) ( )t at at a t at bt

o o o

B t (rising function)(decaying funciton)
B t e B e B e e B e eτ τ τ τ τ τ− − − − + − −

=

= − = − = −
 (5) 

In Equation (5), Bo, is the initial magnetic field (not the maximum); a is the discharging 

coefficient, b is the charging coefficient where b = a+1, and τ is the time constant of the 

charging source function.  Since the magnetic and electric fields are related through the 

constant, c (the speed of light), the free-field MIL-STD EMP generated electric field is 

shown in Equation (6). 

 / / / /( ) ( ) ( )at bt at bt
o oE t cB e e E e eτ τ τ τ− − − −= − = −  (6) 

Using Ohm’s law and a known resistance for the CVR, the current is determined through 

scaling the measured voltage, as shown in Equation (7).   

 / /( ) ( )at bt
oI t I e eτ τ− −= −  (7) 
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CHAPTER 2 

THEORY AND MODELING 

2.1 Overview of Van de Graaff Operations 

 The Van de Graaff (VDG) is a large capacitor with an air-filled discharge gap.  

The VDG transmits a current in a spark channel, following voltage breakdown of air 

between the high voltage terminal (the VDG dome) and the strike plate.  This is shown in 

Figure 3.  The VDG works on the principles of manipulating static electricity through the 

triboelectric series. 

  The property known as static charge is generated by an accumulation of mobile 

charged particles. Typically, matter is neutrally charged, meaning that the number of 

electrons and protons are the same. If an atom has more electrons than protons, it is 

negatively charged. If it has more protons than electrons, it is positively charged. 

 How strongly an atom holds on to its electrons determines its place in the 

triboelectric series. If a material is more likely to give up electrons when in contact with 

another material, it is more positive in the triboelectric series. If a material is more likely 

to capture electrons when in contact with another material, it is more negative in the 

triboelectric series. 
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Figure 3. AFRL’s Van de Graaff at Wright-Patterson, showing discharge to the 
strike plate. 
 

 The triboelectric series for common materials found in and around a VDG is 

given [7]; positive triboelectric materials in the series are at the top, and negative ones are 

at the bottom. 

• Air (Very positive -Gives up electrons) 
• Human hands (usually too moist, though)  
• Human hair 
• Nylon  
• Aluminum (VDG bottom roller and dome head) 
• Steel (Neutral) 
• PVC (VDG  structure) 
• Polyurethane (VDG drive belt) 
• Polytetrafluoroethylene (VDG top roller) 
• Teflon (Very negative - Captures electrons) 
 

 The relative position of substances in the triboelectric series indicates how they 

will act when brought into contact. For example, polyurethane (VDG belt) brought next 

to aluminum (VDG bottom roller) causes a charge separation because they are separated 
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in the triboelectric series; the bottom roller gives up electrons and becomes positively 

charged while the belt captures electrons and becomes negatively charged, as shown in 

Figure 4.   Since the belt surface area is larger than the roller surface area, the surface 

charge density will be greater on the roller than on the belt.  The top roller made of 

polytetrafluoroethylene has a charge transfer exactly opposite from the bottom roller. 

 

Figure 4.  A charge transfer takes place from the roller to the belt. Adapted from 
[8]. 
 
 
 The VDG system is a charge pump that turns the dome head into a charged 

capacitor.  The VDG, as shown in Figure 3 is made up of a conveyor belt, made of 

polyurethane, and a pair of rollers (polytetrafluoroethylene, the top roller, and aluminum, 

the bottom roller) housed inside a structurally supported column made of PVC piping.  A 

metal comb, not visible in Figure 3, is placed adjacent to each roller, as shown in Figure 

5.  The metal combs do not physically touch the roller or the belt so that the charge 

exchange is through a thin layer of air. A motor is used to drive the belt and move the 

charge.  
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 In the AFRL VDG, the lower comb is attached to a 20 kV high voltage source, 

which can be used in either polarity.  The high voltage source ionizes the air and either 

electrons or ions (depending upon the voltage polarity) are transferred onto the drive belt 

and carried to the capacitive dome. For all experiments in this thesis, the VDG was 

operated with the voltage source for primary charge transfer versus the triboelectric 

effect, in order to more rapidly charge the system. The VDG can be operated without the 

high voltage source, completely relying upon the triboelectric effect (See Appendix A). 

 

 

 

Figure 5. Diagram of high voltage source charging the VDG belt. Adapted from [8]. 
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2.2 High Altitude Electromagnetic Pulse (HEMP) 
 
 
 The prompt gammas that escape a high altitude nuclear burst (well above the 

earth’s atmosphere) are the driving force behind HEMP.  The prompt gammas of 

61.5 10 eV× that travel into the earth’s atmosphere interact with the atmosphere primarily 

through the Compton Effect. Compton electrons produce a flux of energetic electrons, 

which decelerate linearly due to collisions, and accelerate curvilinearly due to interaction 

with the earth’s magnetic field [9].  These accelerating charges constitute a time-

changing electric current, which generates a pulse of electromagnetic radiation according 

to Equations (3) and (4).  These effects are described in Figure 6. 

 

Figure 6. Diagram of situation that results in nuclear weapons generated High 
Altitude EMP (HEMP) [9]. 
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 The rise time of this current is a mirror of the rise time of the gamma rays, which 

in turn mirrors the weapon fission rise time.  This fast rise time, faster than the rise time 

of a lightning strike, gives the EMP pulse a unique high frequency component [9]. The 

magnitude of an EMP voltage compared to a lighting strike, as well as electrostatic 

discharge is shown in Figure 7.  The purely empirical expression for the EMP pulse as 

described by MIL STD 464 (see Equation (1)) is the difference between two 

exponentials.  Bridgman states, “The double exponential form poorly represents the 

initial rise of the pulse and, as a result, misrepresents the high frequency content of the 

pulse” [9].  Nevertheless, the double exponential is the presently approved Military 

Standard pulse.      

 

  

Figure 7. The magnitude of EMP, lighting and electrostatic discharge are compared 
[2]. 
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2.3 Dielectric Breakdown of Air 

 Dielectric breakdown occurs when a charge buildup exceeds the electrical field 

limit or dielectric strength of a material. In the breakdown of air, the negatively charged 

electrons are pulled in one direction and the positively charged ions in the other. When 

air molecules become ionized in a very high electric field, air then changes from an 

insulator to a conductor. 

 Due to the very high electric field generated by the VDG, an oscillating current 

(known as a strike) will then occur between the dome head and the strike plate.  Strikes 

occur because of the recombination of electrons in the air and ions on the strike plate. For 

example, lightning occurs when there is a buildup of charge on the clouds and in the air.  

This then produces the electric field between the clouds and the ground that exceeds the 

dielectric strength of air. Ionized air is a good conductor, and provides a path whereby 

charges can flow from clouds to ground, or in the VDG case, from the dome head to the 

strike plate.   

 This phenomenon, which is called dielectric breakdown, occurs in air at an 

electric field strength of about Emax = 63 10× V/m, at standard temperature and pressure. 

The exact value varies with the shape and size of the electrodes, and increases with the 

pressure of the air [7]. 

 Personnel from AFRL provided the data on a single known point generated using 

the VDG.  On Feb 4, 2010 at 11:12 a.m. the breakdown potential was measured as 

VBrkDwn 62.75 10× V at an electrode separation distance, d, of 91 cm [10].  The 

temperature and relative humidity were 273.9 K and 73% [11]. 
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 The breakdown of air can be modeled as an underdamped RLC circuit that is 

controlled by the dielectric breakdown of air.  A simulated breakdown of air and its curve 

fit is shown in Figure 8 [7].  The theoretical data shows a goodness of fit, or R2 value, of 

95% to a damped sine wave described by the equation: ( ) sin( )tI t Ae tα ω−= .  Goodness 

of fit definitions are given in Appendix C. 

 

Figure 8.  Voltage as a function of time illustrating that the VDG is an underdamped 
RLC circuit that is controlled by the dielectric breakdown of air. Adapted from [7]. 
 

2.4 RLC (Resistor, Inductor, and Capacitor) Circuits 

 Staniforth and Charlesworth’s research showed that the VDG can be modeled 

after an RLC circuit [5][12].  The VDG RLC circuit is shown in Figure 9.  Using 
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Kirchhoff’s loop rule for an RLC circuit it was shown that the current was in the form of 

an oscillatory current pulse, and its amplitude is damped with time [12].    

 

Figure 9. The VDG circuit can be simplified into a basic resistor, inductor, and 
capacitor (RLC) circuit. 
 

 For the VDG RLC circuit, the resistance, inductance and capacitance are given by 

R, L and C, respectively.  The inductance and resistance for the spark discharge path are 

given by Ls and Rs, respectively.  When air breakdown occurs, it is as though the switch 

“S” is closed and current flows through the circuit, with resistance of the dome, strike 

plate, and all other resistive and inductive parts of the VDG being represented by RM and 

LM.   Because air has a resistance which depends on the current passing through the spark 

channel, the high frequency oscillations produced by the air breakdown are rapidly 

damped [13].   

 Simplifying this circuit was accomplished by adding the resistors and inductors in 

series, and then applying Kirchhoff’s loop rule, which results in a differential equation as 

shown in Equation (8). 
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 0dI QL IR
dt C

+ + =  (8) 

Replacing I with /dQ dt in equation (8), a second-order linear differential equation with 

constant coefficients is obtained as shown in Equation (9). 

 

 
2

2

1 0d Q dQL R Q
dt dt C

+ + =  (9) 

Equations (8) and Equation (9) are analogous to the mass on a spring equation for a 

damped harmonic oscillator, as shown in Equation (10). 

 
2

2 0d dxm b kx
dt d

x
t

+ + =  (10) 

 In the oscillation of a mass on a spring, the damping constant b leads to a 

dissipation of energy. In an RLC circuit, the resistance R is analogous to the damping 

constant b of the spring and leads to a dissipation of energy. 

 If the resistance is small, the current oscillates with angular frequency that is very 

nearly equal to 𝜔0 = 1
√𝐿𝐶�  .  This frequency is called the natural frequency or 

resonance frequency of the circuit.   

 Equation (8) was shown qualitatively from energy considerations.  Multiplying 

each term in equation (8) by the current, I, leads to Equation (11). 

 2 0dI QLI I R I
dt C

+ + =  (11) 

The magnetic energy in the inductor is given by 𝑈𝑚 = 1
2

𝐿𝐼2 + 𝐶 .  The derivative of the 
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magnetic energy leads to Equation (12). 

 
21( )

2
d LI dILI

dt dt
=  (12) 

Therefore, LI dI/dt, the first term in Equation (11), is the time rate of magnetic energy 

stored in the circuit.  If LI dI/dt is positive, it equals the rate at which electrical potential 

energy is transformed into magnetic energy. If LI dI/dt is negative, it equals the rate at 

which magnetic energy is transformed back into electrical potential energy.  Note that 

whether LI dI/dt is positive or negative depends on whether I and dI/dt have the same 

sign or different signs.  The second term in equation (11) is I2 R, the rate at which 

electrical potential energy is dissipated in the resistor.  This term is never negative. 

 The electric energy stored in the capacitor is shown in Equation (13).  

 
21 1

2 2e c
QU QV
C

= =  (13) 

 

The derivative of Equation (13) results in Equation (14). 

 

21( )
2

Qd Q dQ QC I
dt C dt C

= =  (14) 

 IQ/C is the third term in Equation (11), and represents the rate of change of  electric  

energy stored in the capacitor, which may be positive or negative.  For the RLC circuit 

the sum of the electric and magnetic energies is not constant because energy is 
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continually dissipated in the resistor, thereby damping the oscillations.  The solutions to 

the second order linear differential equation are shown in Appendix A. 

2.4.1 Modeled RLC Circuits  
  

  MIL-STD-464 requires a single electromagnetic pulse for testing, while the VDG 

produces an oscillating sinusoidal current pulse.  To better simulate the required pulse for 

MIL-STD-464, the RLC circuit of the VDG needs to be over or critically damped.  The 

RLC circuit is the primary model for most high voltage and pulsed power discharge 

circuits.  To illustrate this point an example of a series RLC circuit, as described in Figure 

9, will be taken from an underdamped circuit to an overdamped then critical damped 

system [14].   This RLC circuit becomes a completed circuit when the switch (air 

breakdown between the VDG dome and the strike plate occurs) is closed.  For this 

simulation the total inductance of the circuit is 610− H, the total capacitance is 610− F, the 

initial voltage on the capacitor is 10 V and the total resistance is varied between 0.2, 20 

and 2 Ω to show the difference between the under, over, and critically damped situations. 

 

2.4.1.1 Underdamped RLC circuit when 𝑅2 < 4𝐿
𝐶�  

 
 The current with a known capacitance, inductance and resistance were graphed.  

Figure 10 shows graphs of the under, over and critically damped cases when the 

resistance is varied between 0.2, 20 and 2 Ω.  The under damped case is shown when the 

resistance is an order of magnitude (10x) less than the value required for a critically 

damped circuit.  In Figure 10 the upper graph shows the current with a 0.2 Ω resistor.  
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The circuit current reaches its peak value at ~ 0/ 2t π ω= .   The solutions to the 

underdamped model case are shown in Table 1. 

 

Figure 10. Current as a function of time is graphed for an under, over and critical 
damped RLC series circuit. 
 

Table 1. Solutions to the underdamped second order linear differential equations 
for an RLC circuit [14]. 

2
0

1 ( )
2
R

LC L
ω = −  Omega 

L is the circuit inductance (H)  
C is the circuit capacitance (F)  
R is the circuit resistance (Ω ) 

( )0 2
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R t
LVi t e t

L
ω

ω

−

=  Current V0 is the initial voltage on the 
capacitance (V) 

0
( )

0

0
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R
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2.4.1.2 Over damped RLC circuit when 𝑅2 > 4𝐿
𝐶�  

 
 The circuit schematic for the overdamped RLC circuit is shown in Figure 9.  The 

resistance is an order of magnitude (10x) larger than required for a critically damped 

circuit with a resistance of 20 Ω. 

 The results of the overdamped circuit are shown in the middle graph of Figure 10. 

To drive this overdamped model the load resistor has a 20 Ω value.  Once the switch 

closes the voltage on the load resistor rises to match the capacitor voltage and the current 

damps with time.  The solutions to the underdamped circuit case are shown in Table 2.   

Table 2. Solutions to the overdamped model case are shown [14]. 

2
0 ( )

2
R L
L LC

ω = −  Omega 
L is the circuit inductance (H)  
C is the circuit capacitance (F)  
R is the circuit resistance (Ω ) 

( )0 2
0

0

( ) ( ) sinh( )
R t
LVi t e t

L
ω

ω

−

=  

 
Current V0 is the initial voltage on the 

capacitor (V) 

 
 

2.4.1.3 Critically Damped RLC circuits when 𝑅2 = 4𝐿
𝐶�  

 
 The circuit schematic for the critically damped model case is shown Figure 9.  In 

this critical damped model, the resistance is exactly equal to the value required for a 

critically damped circuit, or 𝑅2 = 4𝐿
𝐶�  (with R= 2 Ω).  The results of the circuit model 

are shown in the bottom graph of Figure 10, and the solutions to the critically damped 

model case are shown in Table 3.  In Figure 10 the circuit current reaches its peak value 
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at t=2L/R.  This circuit is often desirable (if possible) with high voltage energy storage 

capacitors, since voltage reversals can frequently decrease the lifetime of the capacitor.   

 The modeled cases of the under, over and critically damped RLC circuit show that 

to meet MIL-STD-464 standard the circuit needs to be configured with  R, L, and C so 

that the circuit is  over or critically damped. 

Table 3. Solutions to the critically damped model case. 

( )0 2( ) ( )
R t
LV ti t e

L

−

=  Current 

V0 is the initial voltage on the 
capacitor (V)  
L is the circuit inductance (H)  
R is the circuit resistance (Ω ) 

0 02 0.736Peak
V VI

eR R
= ≈  Peak Current Same as above 

 
 

2.4.2 Time dependence of the Spark Gap Resistance 
 
 
 In the simple RLC model of Section 2.4.1, R, L and C were constants. However, 

in the VDG the spark gap resistance (Rs) is time dependent.  Staniforth and Charlesworth 

measured the spark gap resistance and showed that it depends on the current passing 

through the spark gap, which is time dependent for the VDG [12].  It was found that the 

variation of resistance for all gases through the spark gap can be approximated by using 

Equation (15). 

 ( )
4 1/3

2
3

0

7.0 10

( )
s t

xR t
i t dt

ρ−

=
∫

  (15) 

In Equation (15), ρ is the gas density (kg/m3) before breakdown, ( )i t is the time 

dependent spark channel current (A), and  is the spark gap length (m).  It was also 
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shown that the inductance (L) of the spark gap is independent of the gas pressure, 

damping increases with the terminal strike plate spacing, and ( )sR t  rapidly decreases 

with time [5]. The value of ( )sR t  is obtained at a particular time using Equation (15).   

 In the VDG analysis and research, the equipment to measure the spark gap current 

was not available, and manipulating the gas density in an open room was outside the 

scope.  Therefore, the primary experiment to manipulate ( )sR t  was done by varying the 

spark gap length.  

2.4.3 VDG Circuit Inductance and Capacitance  
 
 

 Energy storage via inductance occurs when current passes through a 

magnetic field. The inductance is related to the current and magnetic flux as ∅𝑚 = 𝐿𝐼.   

In principle, the inductance of any coil or circuit can be calculated by assuming a current, 

I, and then calculating the magnetic field at every point on a surface bound by the coil or 

circuit, and then calculating the magnetic flux, and finally using 𝐿 = ∅𝑚/𝐼.  Since the 

current in the spark gap is time-dependent, the induction is also time-dependent.   

 Charlesworth and Staniforth measured the current flowing in the spark gap and 

found that the channel inductance is approximated by 1.4 nH/mm for both small (1.5 

MV) and large (10 MV) VDGs [5][12].  Using this assumption and a spark gap distance 

of 6″, the induction of the VDG was found to be 9213 10−× H.  

 The capacitance for the VDG was calculated to be 114.5 10−×  F [6], with the 

assumption that the VDG capacitance is calculated in three parts that are added together.  
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The top of the VDG dome is a capacitor that is made of a hollow aluminum hemisphere.    

The capacitance of a sphere, Csphere, is given in Equation (16). 

 spheresphere o rC = 4 Rπ ε ε  (16) 

  

In Equation (16), RSphere is the spherical radius of the VDG dome and εr is the dielectric 

constant.  The hemisphere is set over the bottom half of the dome, which is a hollow, 

horizontally aluminum oriented toroid. An empirical equation for the capacitance of a 

toroid, Ctoriod, in pF, is shown in Equation (17) [15]. 

 (0.37 0.23 )toroid r Major MinorC D Dε= +  (17) 

 

Therefore, the total capacitance of the VDG dome was found using Equation (18).  

 
2

sphere toroid
dome

C C
C

+
=  (18) 

 

 The final capacitance component is the air volume capacitance, CAirVolume.  The air 

volume is that of the space between the two electrodes.  This component is a function of 

the spark gap distance and is also calculated by changing Equation (16) to read: 

airAirVolume o rC = 4 Rπ ε ε .  Therefore, CTotal is spark gap dependent.  The capacitance of the 

VDG system is found by CTotal = Cdome + CAirVolume. 

2.5 Current Measurements via a Current Viewing Resistor (CVR) 
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An SDN-414-05 model, current viewing resistor (CVR) with a known resistance 

of R=0.02651 Ω was used to measure the time dependent current for electrostatic 

discharges from the VDG. This CVR model has a maximum band pass frequency of 

92 10×  Hz, a minimum rise time of 101.8 10−× s, and a maximum energy of 2 joules [16], 

which was sufficient for all measurements in this thesis. 

A sample energy calculation using typical values is shown in Equation (19) [6].  

Using a maximum current of 450 (A) and a full width half maximum (FWHM) time of 

72.91 10−× s, the CVR is well within its design limits.   

 

2 -3

-7

Energy (J), E=i Rt=1.56×10
Current (A), i=450
Resistance (ohms), R=0.02651
time (s) (FWHM), t=2.91×10

 (19) 

 

 The use of the current to verify the time dependence of the spark gap electric field 

is problematic as the current through the CVR does not fully measure the spark gap 

current (and thus the electric field time dependence) for the spark gap.  There are multiple 

measurement options for the current flow and energy storage in the circuit as noted in 

Chapter 3. To reduce these issues, impedance matching, shielding of cable and 

equipment, as well as placement of the CVR were analyzed. 
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2.6 Impedance Matching Measurements 
 
 The equipment used in this thesis is listed in Table 4.  The cables, voltage source, 

oscilloscope, VDG and strike plate all have characteristic impedances.  Pulse 

transmissions through coaxial cables are divided into two cases: 1) low-frequency, or 

slow pulses and 2) high-frequency, or fast pulses.   The VDG generates electromagnetic 

pulses with frequency components into the MHz range, which are (by definition) fast 

pulses.  A fast pulse has a rise time that is shorter than the cable transit time.  For fast 

pulses, the characteristic impedance of the cable becomes important, because it describes 

the ability of the pulse to transit the cable unimpeded.  This characteristic impedance 

depends on the dielectric material and diameter of the inner conductor and the outer 

shield of the cable; but is independent of the cable length, as shown in Figure 11.  The 

properties of the coaxial cables used in this research are shown in Table 5. 
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Table 4. Equipment used in current measurements of the VDG. 

Van de Graaff Generator 
(VDG) 

Built at AFRL. The Arc of the Dome is ~ 7’ above the 
floor. 

Oscilloscope Tektronix TDS 5104B 

Current Viewing Resistor T & M Research Products. SERIES SDN-414-0.025 

Power Supply (Generator) No Manufacturer or Model Listed 
ID No.: C845588   S.N. N225035-01CJ090204 

Power Switch General Electric Fuji AF-300 Mini  

Model NEMA 1XCID     S.N.: 7BZ471A0008 

Cable RG 58C/U with a Characteristic Impedance of 50 Ω  
and Signal Propagation of 0.659 × speed of light 

 RG62A/U with a Characteristic Impedance of 93 Ω  
and Signal Propagation of 0.840 × speed of light    

Connectors BNC and commercial alligator clips  

Shunt Terminators 50 and 100 Ω  

Barometer Nimbus Digital Barometer  SN B6C8F2N01 

Signal Generator Agilent 33220A – 20MHz Function 

 

 

Figure 11.  Construction of a standard coaxial cable. Adapted from [17]. 
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Table 5. Properties of the coaxial cables used for all experiments [17]. 
Cable 

Type 

Insulating 

Material 

Cable 

Diameter 

(cm) 

Characteristic 

Impedance 

(Ω ) 

Signal 

Propagation 

(fraction of 

3x108 m/s) 

HV 

Rating 

(V) 

Cable 

Capacitance 

(pF/m) 

Signal 

Attenuation per 

Meter 

MHz dB 

RG-

58C/U 

Polyethylene 0.50 50 0.659 1900 100.1 100 

400 

0.174 

0.413 

RG-

62/U 

Polyethylene 0.61 93 0.840 750 44.3 100 

400 

0.102 

0.207 

 

 Impedance is considered matched when the voltage source, VS, equals the voltage 

load, VL, as shown in the schematic of Figure 12.  When impedance is matched, 

maximum power is transferred from source to load, and reflections along the transfer 

cable are minimized.  

 

Figure 12.  Circuit diagram for impedance matching. Adapted from [17]. 
 

 

 In this circuit the impedance, ,T S LZ Z Z= +  represents the opposition to the flow 

of energy from a source. For a constant current source (i.e. DC) the impedance is simply 

the circuit resistance, but for varying signals (i.e. AC) like those produced by the VDG, 

the impedance is a function of frequency.  Impedance is represented as a complex value; 
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the real part represents the resistance, R, while the complex part represents the reactance, 

X, or the time dependent part. These relationships are shown in Equation (20) with j 

being the imaginary number. 

 
1

Z R jX

j

= +

= −
 (20) 

  

 Both capacitive reactance XC and inductive reactance XL contribute to the total 

reactance, as shown in Equation (21); both are dependent on the frequency of the signal 

or system. 

 1 1
2

2

C L

C

L

X X X

X
C fC

X L fL
ω π
ω π

= +

− −
= =

= =

 (21) 

If X is greater than zero, the reactance is said to be inductive.  If X is less than zero, the 

reactance is said to be capacitive, and if X equals zero, then the impedance is all resistive.  

This happens when the magnitude of XC equals the magnitude of XL and happens at 

resonant frequency.  At resonant frequency, maximum power is delivered from the 

current source to the current load. 

2.7 Resonant Frequency 
 
 Resonance of a circuit involving capacitors and inductors occurs because the 

collapsing magnetic field of the inductor generates an electric current that charges the 

capacitor, and then the discharging capacitor provides an electric current that builds the 
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magnetic field in the inductor. This process is repeated continuously. An analogy is a 

mechanical pendulum. 

 Resonant frequency is reached when 1
o LC

ω = , as shown in Equation (22).  At 

resonant frequency maximum power is obtained in the system, and therefore peak current 

is reached. Resonance is approached as reactance approaches zero and impedance is 

minimized.  Experimentally, resonance is measured as voltage and current reach their 

peak values.   

When the CVR was placed in line on the equipment experiments, the resonant 

frequency of the VDG system was experimentally found to be near 15 MHz.  The 

equipment resonance experiment is described in Appendix B. 

 2
0

1 1 1
C LX X

LC LC LC
ω ω ωω

=

= → = → =  (22) 

2.8 Skin Effect in metallic conductors 
 
 The skin effect is the tendency of an AC current to become distributed within a 

conductor such that the current density is largest near the surface of the conductor, and 

decreases toward the center. The electric current flows mainly at the skin of the 

conductor, between the outer surface and a distance called the skin depth. The skin effect 

causes the effective resistance of a conductor to increase at higher frequencies, where the 

skin depth is smaller, thus reducing the effective cross-section of the conductor. The skin 

effect is due to opposing eddy currents (Iw), induced by the changing magnetic field 

resulting from an AC current. At high frequencies, the skin depth becomes much smaller, 
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and the overall resistance of the conductor increases, which in turn decreases the current. 

This effect is shown in Figure 13 [17].  

 

Figure 13.  Skin depth is affected by eddy currents, Iw, that arise from a changing 
magnetic field.  This effect reduces the current flow. Adapted from [17]. 
 
 
 Coaxial cables in high-frequency electromagnetic fields are shielded by virtue of 

the skin effect.  At frequencies at which the skin depth is comparable to or smaller than 

the braid strand thickness (e.g. around 100 kHz), the shielding is quite effective, but will 

become less so at higher frequencies.  Under extreme conditions, it is sometimes 

necessary to surround the braid with a second shield to fully exclude the effects of very 

strong fields through which the cable must pass [17].  Doubly shielded coaxial cables are 

commercially available, in which a second braided shield is provided; however, another 

solution for difficult cases is to run a conventional cable inside tubing made of a solid 

conductor [17].  For this research the oscilloscope and the coaxial cables both need to be 

shielded to reduce electromagnetic interference (EMI).  This was accomplished by 

shielding the coaxial cables with aluminum tape, as well as placing the oscilloscope on a 
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table (~ 3′ from the floor) and 4′ outside of the VDG room; also taking advantage of the 

field reduction with distance and shielding provided by the room walls.   

2.9 Constructive and Destructive Reflections 
 

 Reflections in the coaxial cable are caused by abrupt changes in the electrical 

properties of the media through which the signal is propagated.  This is commonly 

referred to as impedance mismatch. If the cable is connected to an electronic component, 

then the termination resistance is effectively just the input impedance of that component 

(i.e. oscilloscope). If the entire system is impedance matched then there will be no 

reflections and the load signal will not be diminished or enhanced due to constructive or 

destructive interference. 

 To minimize reflections, impedance matching is achieved by making the load 

impedance, ZL, equal to the source impedance, ZS.  Ideally, the source and load 

impedances should be purely resistive.  The transmission line (example RG-58C/U) 

connecting the source and load together must also have the same impedance: Zload = Zline 

= Zsource, where Zline is the characteristic impedance of the transmission line. The 

transmission line characteristic impedance should also ideally be purely resistive. Cable 

makers try to get as close to this ideal as possible, and transmission lines are often 

assumed to have purely resistive characteristic impedances.  This technique is known as 

reflection-less matching. 
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2.10 Effect of bridging and shunt terminators on circuit performance 
 
 
 Impedance bridging is defined when the load impedance, ZL, is much larger than 

the source impedance, ZS (i.e. ZS<<ZL).  Maximizing the load impedance serves to both 

minimize the current drawn by the load and to maximize the voltage signal across the 

load.   The source impedance of the circuit is the combined internal resistance.  Applying 

Kirchhoff’s loop rule to Figure 12, Equation (23) resulted [17].  Equation (23) shows that 

if ZS is low compared to ZL, then s LV V≈ , and essentially all of the signal voltage is 

transmitted to the load (i.e. oscilloscope). 

 

( )

( )

S S L

L L

L

L

S L
S L

L

L
L S

S L

V iZ iZ
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Z ZV V
Z
ZV V

Z Z

= +

=

=

+
=

=
+

 (23) 

  

 To further reduce ZS and enhance the bridging method, a resistor-to-ground 

(called a shunt terminator) was inserted parallel to the input of the oscilloscope so that the 

effective termination is the parallel combination of the source impedance and the shunt 

terminator resistance; effectively reducing the source impedance. As an example, a 100 Ω 

terminator added in parallel with an RG-62/U coaxial cable with a characteristic 

impedance of 93 Ω results in a total impedance of 48.18 Ω, as shown in Equation (24).  



     

33 

The bridging resistance of 610  Ω, and shunt terminator of 100 Ω were used in all of the 

repeatable experiments on this thesis. 

 *1 1 1 S t

parallel S termanator S t

Z Z
Z Z Z Z Z

= + =
+

 (24) 

 

2.11 Fast Fourier Transform (FFT) Algorithm for current pulses 
 
  

 To quantify the frequency components of each data for the VDG experiments, a 

Fast Fourier Transform (FFT) algorithm was used. A control experiment was completed 

to validate the FFT algorithm.  A known signal source of 20 MHz and 5 V was 

transmitted through the VDG strike plate.  This signal was then measured by the 

oscilloscope as shown in Figure 14.  The FFT was used to analyze the frequency 

components.  A single primary component of 20 5± MHz was found, as shown in Figure 

15.  The error comes from the reflections of the impedance miss matches of the VDG 

system.    
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Figure 14.  Known signal source of 20 MHz and 5 volts. 

 

Figure 15.  FFT for a 20 MHz 5 volt source. 
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2.12 VDG Measurements compared to current Models 

2.12.1 Experimental comparison to the Damped Sine Wave model 
  

 All initial experimental current pulses from the VDG represented an underdamped 

circuit.  To solve for the damping coefficient, Equation (25) was used [12]. 

 

12

1 2 1 2
12

2 1 2 1

( ) sin
ln ln ln( / )

2

ti t Ae t
I I I I
t t t t

f

α ω

α

ω π

−=
−

≈ =
− −

=

 (25) 

   

The current magnitudes I1 and I2 were determined together with the associated times t1 

and t2, and the assumption was made that during the time interval t2-t1, the damping 

coefficient 12α was constant so that the discharge current, i, could be expressed by i(t).  

 

Figure 16.  Typical discharge current pulse produced from a VDG (smoothed) [12]. 
 

 Using an amplitude of 235 (A) and a frequency of 8.3 MHz, the damping 

coefficient was determined numerically using a least squares fitting routine, resulting in a 
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time dependent current of 
65.0 10 7( ) 23 5.25 0sin[ ]1x tI xt e t=  which is plotted as a time 

dependent  current pulse in Figure 17 (blue).  For the data in Figure 17 a 3″ spark gap 

was used.  The first oscillation is closely modeled in rise and fall times, but the reminder 

of the oscillations do not fit the model well.  This curve fit model is shown in Appendix 

C.  

 

Figure 17.  Raw data (red) overlaid on top of theoretical (blue) damped sine wave. 
  

 Comparing the theoretical damped sine wave (Figure 17) to the experimental data, 

a goodness of fit R2 value -0.022 is obtained.  A low R2 value, or negative value, means it 

is a very poor curve fit.  For a better curve fit only the first two oscillations were used and 

a R2 value 0.54 was found, but when just the first oscillation was analyzed, then an R2 

value 0.92 was found.   

 This model was used on all of the repeatable data and showed that only the first 

oscillation had a R2 value greater than 0.90.  CVR connections, placement of RG-62 

cable, transient electric field, time dependent spark gap resistance, humidity, and 
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temperature were all assumed to cause differences from the simple theoretical model.  

Therefore it was found that only an analysis of the first oscillation is repeatable and the 

modeling parameters of a single sine wave are useful.  

2.12.2  Spark Gap Model 
 
 In an ideal RLC circuit R, L, and C are held constant but in the VDG Rs and L are 

time dependant and C is spark gap length dependent.  Therefore, a model was developed 

to explore the effects of the time dependent current in the spark gap.   The model solves 

the RLC circuit with a time dependent resistance based upon Charlesworth and 

Staniforth’s equation for spark gap resistance, shown in Equation (15) [12], and the 

underdamped time dependent current, shown in Section 2.4.1.1 Table 1. 
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The model methodology is shown in Table 6.   Rs is the spark gap resistance, L is 

inductance, C is capacitance, ωo is angular frequency, and V0 is initial voltage.  The flow 

of the algorithm is from top left to top right, then down one row for the next iterative 

step.  The model is shown in Appendix C.   
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At time zero, 2/3

0
( )

t
i t dt∫  was assumed to be 10-9 (A) so that a singularity would 

not exist when solving for the first step of R.  For a spark gap maximum current of 2600 

(A), as shown in Figure 25, the error introduced is small.  

Table 6.  Iterative algorithm to the time-dependent spark gap current. 
Start here →   Then ↓ 
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t= 112 10−×  

(step 2) 

same same same Same 

... ... ... ... ... 

Until t=tmax ... ... ... ... 

 
  

 Using Charlesworth and Staniforth’s known values for a 10 MV VDG, L = 

370nH and C = 200pF [12],  a spark gap  of 3″,  and air density of 1.225 kg/m3,  the time-

dependent current was found as shown in Figure 18. To compare to known values, the 

spark gap resistance is also plotted, as shown in Figure 19; these values correspond well 

with the data in [12]. 
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Figure 18.  Spark gap time-dependent current is damped after 6 oscillations. 
 

 
Figure 19.  Spark gap time-dependent resistance decreases with time. 
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 To compare the spark gap time-dependent current to experimental data, it had to 

be scaled to the measured current.  The data for a spark gap of 3″ is plotted against the 

scaled version of the modeled spark gap current, as shown in Figure 20.  The modeled 

current is fully damped at 60.3 10 ( ),s−× while the experimental data is damped after 

610 ( )s− .  

 Although an RLC circuit model provides initial insight into the expected current 

waveform, in this research the more physical results of adding a time dependent spark 

gap resistance were explored. The resultant model verifies that the time dependent 

current is oscillatory and damped with time.  When comparing the modeled spark gap 

current to the direct current, even the first oscillation appears with reflective interference, 

as the model’s first oscillation’s primary frequency component is 15 MHz as compared to 

the experimental data of 8 MHz as determined from Fourier analysis.  

 

Figure 20.  Scaled down spark gap current (red) compared to direct current (blue) 
for a 3″ spark gap, and the CVR placed at position A on the support cable, as shown 
on Figure 22. 
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CHAPTER 3 

VDG EXPERIMENTS 

3.1 Equipment Confidence Experiments 

3.1.1 Introduction 
 
 Equipment confidence experiments were conducted before subjecting the 

oscilloscope, coaxial cables (which were shielded with aluminum tape), and BNC 

connectors to the high currents generated from the VDG and the EMI (Electromagnetic 

Interference) from the transient electromagnetic pulse during an electrostatic discharge.   

All equipment confidence experiments were conducted with a signal source generator 

instead of the VDG, in order to gain confidence in the measuring equipment, and 

methodologies used. 

 A signal source generator was used to send a sinusoidal wave of fixed amplitude 

through the aluminum foil-shielded coaxial cables (RG-62/U and/or RG-58 C/U) to the 

strike plate, and then either into the CVR or directly into another shielded coaxial cable to 

the oscilloscope.  The purpose was to verify that the wave was not distorted, and that the 

oscilloscope was reading the voltage signal correctly. 

3.1.2 Response to Reflection-less (Impedance) Matching  
  

 Reflection-less matching was used as the baseline equipment confidence 

experiment.  The signal source had an impedance of 50 Ω, the RG-58C/U transmission 

cable had a characteristic impedance of 50 Ω, and the oscilloscope was set to a 50 Ω 

termination.   If impedance can be matched correctly then maximum power is 
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transmitted, and VS =VL.   The voltage drops shown in Table 7 are from the skin effect at 

frequencies above 1 MHz, as well as characteristic cable impedance.  This experiment 

demonstrated the skin effect theory.  The signal source was connected directly to the 

oscilloscope through a coaxial cable; the data is shown in Table 7.  

Table 7. Impedance matching for a coaxial cable experiment. 

Signal Source 

(50 Ω impedance) 

Oscilloscope 

(Terminated at 50 Ω) with  

RG-58C/U (50 Ω) cable of 15ft length 

Frequency  Voltage Frequency Voltage 

1 MHz 1 V 1 MHz 1 V 

1 MHz 5 V 1 MHz 5 V 

1 MHz 10 V 1 MHz 10 V 

1 MHz 5 V 1 MHz 5 V 

10 MHz 5 V 10 MHz 4.92 V 
15 MHz 5 V 15 MHz 4.92 V 

20 MHz 5 V 20 MHz 4.88 V 

 

3.1.3 Response to Reflections (Impedance miss-matched) 
 
 The experiment was repeated, but with RG-62/U coaxial cables of different 

lengths.  These cables have a characteristic impedance of 93 Ω, and would not be 

impedance-matched with either the signal source or the signal load of the oscilloscope 

since the source and load impedances were still 50 Ω.  This had the effect of producing 

destructive interference and the oscilloscope indicated that the peak voltage was reduced 

compared to the reflection-less experiment; compare Table 7 to Table 8. 
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Table 8. Interference occurs when impedance is not matched using the RG-62 
cables. 

Signal Source 

(50 Ω impedance) 

Oscilloscope 

(Terminated at 50 Ω) with RG-

62 (93 Ω)  cable of 3ft length 

Oscilloscope 

(Terminated at 50 Ω) with RG-

62 (93 Ω) cable of 30ft length 

Frequency  Voltage Frequency Voltage Frequency Voltage 

1 MHz 1 V 1 MHz 0.98 mV 1 MHz 0.96 mV 

1 MHz 5 V 1 MHz 5 V 1 MHz 4.88 V 

1 MHz 10 V 1 MHz 9.98 V 1 MHz 9.80 V 

1 MHz 5 V 1 MHz 5 V 1 MHz 4.88 V 

10 MHz 5 V 10 MHz 4.98 V 10 MHz 4.32 V 

15 MHz 5 V 15 MHz 4.94 V 15 MHz 4.84 V 

20 MHz 5 V 20 MHz 4.88 V 20 MHz 4.10 V 

  

 At high frequencies, the total reactance of Equation (21) was increased thereby 

decreasing VL. The increase of the VL for the 30′ cable (i.e. 4.32 V up to 4.84 V) from the 

10 MHz to 15 MHz is likely from resonance constructive interference as shown in 

Appendix B.  The cable lengths also affected the measurements as cable capacitance is 

length dependent, as shown in Table 5.  The added impedance caused by the increase of 

cable length decreases VL from the 3 to the 30′ cable length for all frequencies measured. 

3.1.4 Response to the bridging and shunt terminator 
  

 The bridging method, having the load impedance ZL much larger than the source 

impedance ZS (i.e. (ZS<<ZL) for maximizing the voltage signal across the load was 

investigated.  The oscilloscope was terminated at 610  Ω and a shunt terminator of 50 Ω 

was added in parallel, the results are shown in Table 9.  This method resulted in a clean 
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waveform and was used for all follow on experiments.  For impedance matching a 50 Ω 

shunt terminator should be used on the RG-58 cable experiments and a 100 Ω shunt 

terminator for the RG-62 cable experiments; as these shunts match and closely match the 

respective characteristic cable impedances, as shown in Table 5. 

Table 9.  Impedance bridging and shunt terminator experimental data.  

Signal Source 

(50 Ω impedance)  

Coaxial Cable RG-58C/U (15ft) 

Oscilloscope terminated at 610  Ω  

and a shunt terminator of 50 Ω 

Frequency  Voltage Frequency Voltage 

1 MHz 1 V 1 MHz 1V 

1 MHz 5 V 1 MHz 5 V 

1 MHz 10 V 1 MHz 10 V 

1 MHz 5 V 1 MHz 5 V 

10 MHz 5 V 10 MHz 5 V 
15 MHz 5 V 15 MHz 5 V 
20 MHz 5 V 20 MHz 5 V 
 

3.1.5 Response to CVR   
 

 To analyze the response of the CVR, two lengths of RG-62 coaxial cables were 

connected, as shown in Figure 21.  The experimental data is shown in Table 10. 

 

Figure 21. Two RG-62 cables and CVR equipment experimental setup. 
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Table 10. Two RG-62 cables and CVR experimental data. 
Signal Source 

(50 Ω impedance) 

Oscilloscope 

(Terminated at 50 Ω) with two RG-62 

(93 Ω)  cables of 50ft combined 

length 

Oscilloscope 

(Terminated at 50 Ω) with the two 

RG-62 (93 Ω) cables and the CVR 

placed in the middle 

Frequency  Voltage Frequency Voltage Frequency Current 

1 MHz 1 V 1 MHz 0.96 V 0.93 MHz 0.05 A 

1 MHz 5 V 1 MHz 4.76V 1.00 MHz 0.18 A 

10 MHz 5 V 10 MHz 4.36 V 9.26 MHz 0.08 A 

15 MHz 5 V 15 MHz 4.37 V 13.51 MHz 0.09 A 

20 MHz 5 V 20 MHz 4.84 V 19.30 MHz 0.10 A 

 
  

 With a combined length of 50′ for the two RG-62 cables the expected voltage 

drop, due to the characteristic impedance of the two cables, was measured on the 

oscilloscope.  These cables have a characteristic impedance of 93 Ω, and would not be 

impedance matched with either the signal source or the signal load of 50 Ω.  This 

produced destructive interference, reducing VL.  At high frequencies, the total reactance 

and the skin effect increase.  Both of these effects cause a decrease in VL.  With the CVR 

in place, a resonant frequency (ω0) of approximately 1 MHz was found, as a maximum 

current of 0.18 (A) was measured for the 1 MHz, 5 V source.  This current was calculated 

using the 0.02651 Ω CVR.  Resonance was approached at frequencies above 10 MHz as 

current began to increase again.  When the CVR is placed in the system the measured 

current frequency deceases.  This is likely do to circuit impedance differences between 

the coaxial cable and the CVR which resulted in reduced energy transfer and lower 

voltage. 
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3.1.6 Response to CVR Location  
 
 The purpose of these experiments was to find the best cable and connector 

attachment that would maximize the power throughput.  In other words to find the best 

impedance matched circuit. The CVR was placed in numerous locations along the VDG 

and the power measured on the oscilloscope for a variety of sinusoidal waveforms.  The 

two best matches where found when the CVR was placed in position A and position B, as 

shown in Figure 22.  Position A was measured 12″ from the base plate along the support 

cable.  Position B was measured 63″ from the base plate along the support cable, and 

Position C was measured 6″ from the intersection of the support cable and the strike plate 

pole.  These three CVR positions (position A, B and C) will be used to describe CVR 

location throughout this thesis.  The response to the CVR in position A and position B 

will be described in this section.     

 

Figure 22.  Position A, B and C for CVR locations. 
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 These experiments were conducted with a constant frequency of 1 MHz, with 

peak voltages varying from 1-10 volts.  This was then repeated, but this time the voltage 

was kept constant at 5 volts while varying the frequency from 1-20 MHz.  The VDG 

circuit was set up by connecting the voltage source to the front of the strike plate using 

alligator clips and copper foil tape, as shown in Figure 23.  The experiments were 

conducted with and without the CVR to determine CVR response.  The data for the CVR 

placed on the back of the strike plate is found in Appendix B.  The data for CVR in 

position B is shown in Table 11 and was compared to the data measured from position A 

shown in Table 12. 

 

 

Figure 23. Experimental setup with CVR at position B. 
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Table 11. Experimental data with CVR placed at position B. 

Signal Source 

(50 Ω impedance) 

Without CVR 

(The oscilloscope was 

terminated at 50 Ω, RG-62 

cables were used) 

With CVR 

(The oscilloscope was 

terminated at 50 Ω, RG-62 

cables were used) 

Frequency  Voltage Frequency Voltage Frequency Current 

1 MHz 1 V 1 MHz 0.87 V 0.89 MHz 0.04 A 

1 MHz 5 V 1 MHz 4.36 V 1 MHz 0.14 A 

1 MHz 10 V 1 MHz 9.08 V 1 MHz 0.33 A 

1 MHz 5 V 1 MHz 4.44 V 1 MHz 0.16 A 

10 MHz 5 V 10 MHz 2.94 V 10 MHz 0.13 A 

15 MHz 5 V 15 MHz 2.70 V 15 MHz 0.22 A 

20 MHz 5 V 20 MHz 2.62 V 19.80 MHz 0.10 A 

 
 The experiment was conducted again, this time with the CVR at position A, as 

shown in Figure 24.  The data for position A is shown in Table 12.    

 

Figure 24. Experimental setup with CVR at position A. 
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The experiment was conducted to investigate the effect of the additional length of the 

support cable on the circuit response.  Comparing Table 12 to Table 11, without the 

CVR, all but the 10 MHz frequency had a greater voltage drop than at position B.  This 

was likely due to impedance mismatching, and added resistance from the extra support 

cable length.  The increase of VL found at 10 MHz for position A is likely due to the 

oscilloscope responding to a resonance frequency within the circuit.     

 When the CVR was placed at position A, the measured current was higher than 

when attached at position B for all frequencies except the 20 MHz range.  This showed 

that there was a closer impedance match with the CVR at position A.  This was also true 

for all other measured locations.  

Table 12. Experimental data with CVR at position A.  This is the best impedance 
match found. 

Signal Source 

(50 Ω impedance) 

 Without CVR 
(Oscilloscope 
terminated at 50 Ω) 

With CVR 
(Oscilloscope 
terminated at 50 Ω) 

With CVR 
(Oscilloscope 
terminated at  

610 Ω & 100Ω shunt 
terminator) 

Frequency  Voltage  Frequency  Voltage  Frequency  Current  Frequency  Voltage  

1 MHz 1 V 1 MHz 0.86 V 1 MHz 0.05 A 0.99 MHz 0.12 A 

1 MHz 5 V 1 MHz 4.34 V 0.97 MHz 0.17 A 1 MHz 0.24 A 
1 MHz 10 V 1 MHz 8.84 V 1 MHz 0.33 A 1 MHz 0.41 A 
1 MHz 5 V 1 MHz 4.36 V 1 MHz 0.17 A 1 MHz 0.26 A 
10 MHz 5 V 10 MHz 3.24 V 10 MHz 0.26 A 10 MHz 0.64 A 
15 MHz 5 V 15 MHz 1.28 V 15 MHz 0.53 A 15 MHz 0.75 A 
20 MHz 5 V 20 MHz 1.05 V 18.9 MHz 0.08 A 18.2 MHz 0.16 A 
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 Because of the higher VL measurements with the CVR placed at position A versus 

any other location, an additional experiment was conducted, but this time the oscilloscope 

was terminated at 610  Ω, and a shunt terminator of 100 Ω was added in parallel, as shown 

in Table 12 as the last column.  This significantly increased the measured current (greater 

than any other setup or CVR location).  This experiment showed that positioning the 

CVR at position A and terminating the oscilloscope at 610  Ω, as well as adding a shunt 

termination of 100 Ω in parallel, resulted in the best impedance match found, and was 

used for all follow on experiments.   

3.1.7 Summary of Equipment Confidence Experiments 
 

 When the CVR was placed into the experiments, it was shown that the signal 

source had to be greater than 1 volt with a frequency greater than 100 kHz.  If not, the 

oscilloscope was dominated by background noise.  As the strikes from the VDG were in 

the thousands of volts and had frequency components in the MHz range, this was not a 

problem during the VDG pulse experiments.  The signal source generator had a 

maximum output of 20 MHz and 10 volts; therefore, no equipment confidence 

experiments were conducted above these limits.  

 As described in the preceding sections, the characteristic impedance of the 

equipment and cables, as well as the resonant frequency, skin effect, reflections, and 

bridging/terminators, all affected the data.   The use of the RG-62 shielded coaxial cables 

terminated into the oscilloscope at 106 Ω, and shunt terminator of 100 Ω, transferred the 

greatest power to the oscilloscope with the least interference, as shown in Table 12, and 

was used throughout all of the remaining experiments.  It was also determined that when 
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the CVR is placed at position A, as shown in Figure 22 there is a resonant frequency of 

15 MHz, as shown in Appendix B, as the maximum power (e.g. voltage) was measured.   

3.2 Response to VDG Equipment Setup 
  

 A schematic of the major equipment components and general VDG experiment is 

shown in Figure 25.  The VDG was moved 1 to 18″ away from the strike plate to find the 

results of spark gap distance.  The oscilloscope was kept on a 3′ high table placed 4′ 

outside the VDG room to minimize EMI.  The control station for the belt roller motor 

was placed inside the VDG room, and the 20kV high voltage source was supported off 

the ground with a wooden stool 3′ away from the VDG.  The 30′ aluminum taped RG-62 

coaxial cable was supported off the ground by two plastic columns, so as to minimize 

EMI and ground current coupling.  

 

Figure 25.  The Van de Graaff experimental setup used for all VDG experiments. 
 
 A 20 kV high voltage source was used to speed up the charging of the VDG 

capacitance, as described in Section 2.1.  It was determined by experiment that the 
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current pulse amplitude and major frequency components of the wave were unaffected by 

the magnitude of the high voltage input.  It did, however, increase the frequency of strike 

discharges between the VDG and strike plate.  It was also found that the discharge would 

impact the strike plate, causing the strike plate to move in between strikes, which 

momentarily changed the spark gap distance. Through trial and error experiments, a 

minimum of 6 (s) was needed between strikes for the strike plate to fully return to its 

original location and stabilize the spark gap. Therefore, the high voltage source was kept 

as low as possible, so as to produce strikes between 7 and 8 (s).   

 It was also determined that the speed of the motor that turns the VDG belt did not 

affect the waveform.  However, it also impacted the frequency of the discharges.  To 

reduce the number of variables, the motor was kept at 30 RPM for all experiments and 

the high voltage was manipulated to control the time interval to a minimum of 7 (s) 

between strikes.  

 If the spark gap was too great a strike would not occur.  The maximum spark gap 

was found to be between 9 and 18″, depending upon environmental conditions (e.g. 

humidity, temperature and wind).  It was also found that spark gaps greater than 9″ gave 

very erratic current pulses (i.e. large amplitude, and variable frequency of oscillation) 

making the VDG unpredictable.  It is likely (and was qualitatively observed) that for 

larger spark gaps, the current path and strike point would substantially change for a set of 

strikes. Wind travelling through the room (via poorly sealed windows or an open door) 

also reduced the frequency of strikes and the maximum spark gap.  This is likely due to 

the wind removing ionized atoms, such as ozone, that would assist in initiating the strike. 

On days when the wind was not blowing the current pulses would stabilize after 20 
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strikes. Therefore, for each experiment, a set of conditioning strikes were measured until 

the current pulses were consistent. Then data would be collected.  

 With numerous trial and error experiments it was found that the connection of the 

CVR was critical for reliable and repeatable current pulses.  It was found that a poor 

CVR connection could give momentary good results but then the current pulse would 

change.  It was observed, at times, that a small spark gap resulted from poor CVR 

connections to the cable.    Therefore, copper mesh clamps were used to better connect 

the CVR to the support cable, as shown in Figure 26. This resulted in a noticeable 

difference in the current pulse, in which fewer frequency components were observed, and 

measured by FFT.  The primary difference was that the first oscillation became the 

maximum peak of the current pulse, after which the signal was fully damped.

 

Figure 26.  Copper mesh clamps were used to connect the CVR to the support cable 
and additional resistors. 
 
 It was also found by trial and error experiments that to have repeatable current 

pulses all equipment had to be isolated, as much as possible, from the concrete floor, as 
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shown in Figure 27.  The next critical setup procedure was placement of the RG-62 

shielded coaxial cable.  The cable was positioned on support material and configured as 

shown in Figure 28.  Once the VDG equipment was isolated from the concrete floor, the 

CVR had a solid connection, and the RG-62 cable was positioned so as to produce a 

maximum peak current in the first oscillation, reliable and repeatable current pulses were 

obtained.  For the repeatable experiments, once a current pulse was measured in which 

the first oscillation was statistically (frequency and amplitude measured) stable, the RG-

62 shielded cable was not moved for the rest of the experiments, as shown in Figure 28.  

 

Figure 27.  All VDG system equipment was isolated from the concrete floor. 
 



     

55 

 

Figure 28. VDG setup with RG-62 shielded coaxial cables supported above the 
concrete floor. 
 
 To eliminate potential electrical noise from current sources within AFRL’s 

Building B71, a new ground cable was installed.  This new ground was connected 

directly to a grounding station outside of the building without any additional connections.  

With the new ground in place the repeatable setup, as described in this section were being 

followed and the results analyzed.  However, the VDG transfer belt broke and this 

experiment was not completed.  Initial data recorded following the establishment of the 

new ground was promising. 
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3.3 Impedance Response due to CVR Placement 
  

 In the equipment confidence experiments of Section 3.1 a signal source generator 

was used instead of the VDG.  In these experiments the best waveforms were found with 

the CVR at position A (CVR placed 12″ from the base plate along the support cable). The 

same types of experiments were conducted again, but this time with the VDG instead of 

the signal source generator, as shown in Figure 25.  The results were the same as with the 

sinusoidal pulse (voltage source) measurements, validating the exercise.  Some example 

data are shown in Figures 29 and 30.  

 

Figure 29.  Current oscillations with CVR at position A. 
 
 Visual observation shows that position A is a cleaner waveform than position C.  
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components, while position C gave four primary frequency components.  “Primary”, in 

this case, was defined as having at least a Fourier magnitude of 103 10× , as shown in 

Figure 31.   

 

 
Figure 30.  Current oscillations with CVR at position C. 
 

 

Figure 31.  Plot of FFTs of full current pulses measured with the CVR at position A 
(blue) and position C (red). 
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 Charlesworth and Staniforth’s results confirm the data that was found in this 

thesis.  They state a dominant frequency was excited in large [12] and small [5] VDGs 

(10 MV and 5 MV respectively) due to “…the inductance of the VDG resonating with 

the spark channel inductance.  In some cases, a higher frequency, which is an 

electromagnetic mode supported by the whole machine, is also excited” [12]. The 

dominant frequency was spark gap and maximum potential dependent.  A lower 

frequency of 31 ± 3.5 MHz and a higher frequency of 186 ± 17 MHz was found for the 

small 1.5 MV VDG [5].   An additional lower frequency of 10 to 13 MHz, and a higher 

frequency of 110 ± 20 MHz was measured for the shorter spark gaps and 230 ± 25 MHz 

for large spark gaps for the 10 MV VDG  [12].  Both studies state “these higher end 

frequencies are probably associated with the high frequency electromagnetic modes 

which can be supported by the whole machine” [12] [5].   The VDGs used in these 

studies were enclosed and pressurized [5][12], but it was assumed that these methods are 

applicable for the present study. 

  The AFRL VDG was found to have three primary frequencies within the current 

pulse, compared to the two found for the Charlesworth and Staniforth studies.  The same 

raw data that was used for the impedance matching and CVR location experiments, 

shown in Figure 29 and Figure 30 were used to analyze the frequency components via 

FFT. The FFT data, plotted in Figure 31 for both the CVR at position A and position C 

have a primary FFT of 8 MHz ± 1 MHz.  They also both share a secondary dominant 

frequency of 2 MHz, but the tertiary dominant frequency components vary from 15 MHz 

for position A to 29 and 34 MHz for position C.  The FFT algorithm confirms what the 
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raw data showed, which is, that attaching the CVR at position A results in a cleaner 

(fewer interference oscillations, likely due to better impedance matching), current pulse.  

 As another example, the FFT analysis was also applied to the current pulses 

measured with the CVR placed at position B. These results are shown in Figure 40.   It is 

clear from this data that the primary frequency of 8 MHz is not as clearly defined as 

when the CVR was placed at position A or B. 

 Using both raw data and FFT analysis, it was proven that the cleanest signal (e.g. 

one with the fewest dominant frequency components) resulted with the CVR attached at 

position A.  Positions A, B and C were the cleanest current pulses over all other 

locations.  Therefore, position A was chosen for all follow on experiments.  

 

Figure 32.  FFT of the current pulse measured with CVR at position B. 
 

0 1 2 3 4 5 6 7 8 9 10 11 
x 10 7 

0 

5 

10 

15 x 10 7 

Frequency Hz 

Fo
ur

ie
r T

ra
ns

fo
rm

 (A
rb

. U
ni

ts
) 



     

60 

3.4 Response due to Spark Gap  
  

 Once the CVR location of position A was determined to produce the cleanest 

current pulse; which allowed repeatable strikes to take place, the effort was oriented on 

finding the least noisy measurement based upon the spark gap distance.  The same 

method as in Section 3.3 was used.  This method was to qualitatively assess the raw data 

waveform, followed by a FFT to determine the measurement with the least number of 

major oscillation frequencies. The time dependent current for the 3″ spark gap, as shown 

in Figure 33, had fewer reflections and frequencies (on top of the primary current) than 

did the 7″ spark gap, also shown in Figure 33.  From all raw data qualitatively observed 

and recorded, the 3″ spark gap produced the best impedance match over any other spark 

gap distance. 

 

Figure 33.  Current pulse for the 3″ and 7″ spark gaps. 
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 Observation of the raw data showed that the 3″ spark gap produced the cleanest 

current pulse, as shown in Figure 33.  However, the FFT for the spark gaps ranging from 

1 to 8″ were all within ± 0.3 MHz for all three major frequencies.  The primary 

frequency was measured at 7.5 MHz while the secondary frequency was measured at 2 

MHz, and finally the tertiary frequency was found to be 14 MHz.  These measurements 

were conducted with alligator clips for the CVR connection verses the copper mesh 

clamps.  These results are ± 1.5 MHz different from those measured with mesh clamps, 

as shown in Tables 14-17.  Nevertheless, the FFT results lead to the conclusion that the 

spark gaps of 3, 6, 7 and 8″ should be used for the repeatable experiments.  

 

3.5 Reliable and Repeatable Current Strikes 

3.5.1 Environmental Set up 
 
 It was found that to achieve four days of repeatable current pulses the set up of the 

VDG system was critical and that Section 3.2 (VDG Equipment Set up) needs to be 

followed.  Power projections through the measurement circuit were critical to the 

placement of the 30′ RG-62 shielded coaxial cable. Previous experiments showed that 

placement of the cable could change the current amplitude by up to 117 (A).   Positioning 

the cable, on the concrete floor, lead to the greatest decrease in the measured current.  It 

was found that the RG-62 shielded coaxial cable must be supported off the ground, as 

ground current coupling takes place. It was also found that positioning the cable changed 

the amplitude and frequencies of the current pulses.  Therefore, the cable was positioned 

to create an environment where the first current oscillation had the maximum current 
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amplitude.  Once a suitable cable position was found it was kept in that position, as 

shown in Figure 28.  The only time it was moved was when spark gap distance was 

changed.   

3.5.2 Measurements with Repeatable First Oscillations 
 
 The four days of experiments had only slightly different humidity and 

temperature environments for the VDG room.  These conditions are shown in Table 13.  

All experiments had the CVR placed at position A.  Comparing current pulses for the 3″ 

spark gap for experiment 1 to experiment 2 showed that the first oscillations of both data 

sets share the same measured frequency of 8.56 MHz ± 0.4 MHz and approximate 

maximum current amplitudes of 200 (A); however, the amplitudes of the 2nd through 8th 

oscillations are distinctly different, as shown in Figure 34. 

 

Table 13.  Humidity and temperature environments for the repeatable experiments. 

Experiment Humidity Temperature (Fahrenheit) 

1 21% 68 

2 16-21% 68 

3 20% 63 

4 41% 72 
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Figure 34.  Raw data (current as a function of time) for 3″ spark gap. 
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the 7″ spark gap had the longest rise time of 8 81.0 10 0.3 10 ( ).s− −× ± ×   Therefore, it is 

assumed that the first oscillation is repeatable because reflected waves from the pulse 

cannot traverse the cable in time to interfere.   

0 0.2 0.4 0.6 0.8 1 1.2

x 10
-6

-300

-200

-100

0

100

200

300

Time (s)

C
ur

re
nt

 (A
)

 

 
Experiment 1
Experiment 2



     

64 

 The FFT of the current pulse indicates the same dominant frequencies (3, 7 and 

15 MHz ± 2 MHz); however, the primary and secondary Fourier frequencies appear in a 

different order, as shown in Figure 35.  The first oscillations of both experiments share 

the same measured frequency of 8.56 MHz ± 0.4 MHz, as shown in Figure 34. 

 

Figure 35.  FFT for 3″ spark gap for experiment 1 and 2. 
 
 It was found that over all 4 experiments the 3″ spark gap had a measured average 

first oscillation frequency of 8.56 MHz ± 0.4 MHz, while the 6″ spark gap had a 

measured frequency of 13.95 MHz ± 1.0 MHz, and 7″ had a measured frequency of 

15.78 MHz ± 1.3 MHz, and finally the 8″ spark gap had a measured frequency of 15.15 

MHz ± 1.1 MHz.   

 

0 1 2 3 4 5

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

9

Frequency (Hz)

Fo
ur

ie
r T

ra
ns

fo
rm

 (A
rb

. U
ni

ts
)

 

 
Experiment 1
Experiment 2



     

65 

3.5.3 Model of the First Oscillation 
 

 The data from all four days of experiments are shown in Figure 36.  It was 

found that only the first oscillation was statistically comparable and repeatable.  

Isolating the first oscillation from the full wave turns the general equation into a 

sinusoidal wave with a general model solution of: 0( ) sin[ ]I t I tω φ= + , where Io is 

the initial amplitude, ω is the angular frequency, and φ  is the phase change. 

 

Figure 36.  Combined plot for experiments 1-4 for 3″ spark gap. 
 
 As an example, the general sine wave function is used to fit a curve to the first 
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Figure 37.  Curve fitted plot for the first oscillation for the data of experiment 1.  
The spark gap is 3″. 
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 Table 14.  FFT frequencies for measurements made at a spark gap of 3″; first 
oscillation current amplitudes are also shown. 

Experiment Current 
Amplitude 
of 1st 
Oscillation 

Primary 
Frequency 
(Hz) 

Secondary 
Frequency 
(Hz) 

Tertiary  
Frequency 
(Hz) 

1 207.6 62.96 10×  71.48 10×  66.90 10×  
2 214.5 67.00 10×  62.90 10×  71.48 10×  
3 204.4 71.50 10×  61.00 10×  67.00 10×  
4 182.5 66.99 10×  62.99 10×  72.40 10×  

Mean Amplitude 202.25 
   Standard Deviation 13.82 
   Table 15.  FFT frequencies for measurements made at a spark gap of 6″; first 

oscillation current amplitudes are also shown. 

Experiment Current 
Amplitude 
of 1st 
Oscillation 

Primary 
Frequency 
(Hz) 

Secondary 
Frequency 
(Hz) 

Tertiary  
Frequency 
(Hz) 

1 286.6 69.00 10×  61.00 10×  71.60 10×  
2 270.8 71.00 10×  63.00 10×  71.50 10×  
3 242.1 61.00 10×  69.00 10×  71.30 10×  
4 294.2 67.00 10×  63.00 10×  72.40 10×  
Mean Amplitude 273.43 

   Standard Deviation 23.05 
   Table 16.  FFT frequencies for measurements made at a spark gap of 7″; first 

oscillation current amplitudes are also shown. 

Experiment Current 
Amplitude 
of 1st 
Oscillation 

Primary 
Frequency 
(Hz) 

Secondary 
Frequency 
(Hz) 

Tertiary  
Frequency 
(Hz) 

1 323.8 68.00 10×  61.00 10×  71.50 10×  
2 311.3 68.00 10×  63.00 10×  71.50 10×  
3 273.3 61.00 10×  71.50 10×  68.00 10×  
4 346.1 67.00 10×  63.00 10×  72.40 10×  
Mean Amplitude 313.63 

   Standard Deviation 30.49 
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Table 17.  FFT frequencies for measurements made at a spark gap of 8″; first 
oscillation current amplitudes are also shown. 

Experiment Current 
Amplitude 
of 1st 
Oscillation 

Primary 
Frequency 
(Hz) 

Secondary 
Frequency 
(Hz) 

Tertiary  
Frequency 
(Hz) 

1 350.8 61.00 10×  68.00 10×  71.50 10×  
2 369.4 67.00 10×  63.00 10×  71.40 10×  
3 324.4 61.00 10×  71.50 10×  67.00 10×  
4 372.5 67.00 10×  63.00 10×  72.40 10×  
Mean Amplitude 354.23 

   Standard Deviation 22.10 
    

 

 Figure 38 shows that the first oscillation has the mean maximum current, as well 

as the mean frequency, rise as a function of spark gap distance.  The rise is because 

current is a function of voltage and power.  It takes more power to strike across longer 

distances; therefore current, voltage and frequency rise as spark gap distance is increased.  

 The 3″ spark gap data resulted in the smallest standard deviation for current 

amplitude compared to 6, 7, and 8″.   The 3″ spark gap resulted in currents with a mean 

value of 202.25 ± 13.82 (A) and rise to the 8″ spark gap of 354.23±22.10 (A).  As shown 

in Tables 14-17.  For the first three experiments the FFT data for the full current pulses 

produced three dominant frequency components of 3, 7 and 15 MHz ± 2 MHz.  The 

position of the primary to tertiary dominant frequencies changed, but all three days 

shared the same frequencies for the full wave.  The FFT data for experiment 4 shared the 

3 and 7 MHz ± 2 MHz for all spark gaps, but its tertiary frequency was 24 MHz 

compared to the 15 MHz ± 1.5 MHz, found on the three previous experiments.  
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Experiment 4 had higher humidity and temperature over the other three experiments, as 

shown in Table 13. 

 

 

 

Figure 38.  Direct drive current and frequency as a function of strike gap. 
 
  

2 3 4 5 6 7 8 9
150

200

250

300

350

400

Strike Plate Distance from VDG (inches)

C
ur

re
nt

 (A
)

 

 

 
y = 29.643*x + 107.64
R2=0.9781

   Direct Drive Current
   Linear Fit

354 A

313 A

273 A

202 A

2 3 4 5 6 7 8
6

8

10

12

14

16

18

Strike Plate Distance from VDG (inches)

Fr
eq

ue
nc

y 
(M

H
z)

 

 

 
y = 1.8031*x + 3.1469
R2=1

   Direct Drive Frequency    
   Linear Fit

15.78 MHz

8.56 MHz

13.95 MHz



     

70 

3.5.5 Curve Fitting of the First Oscillation 
  

 Curve fitting the data to the sine wave function of 0( ) sin[ ]I t I tω φ= +  is achieved 

by isolating the first oscillation from the rest of the data.  The general models for the 3, 6, 

7 and 8″ spark gap distances, as well as the goodness of fit data for each distance, are 

shown in Tables 18-25 with a summary in Table 27.  The curve fit for experiment 3, for a 

spark gap of 3″, gave the best curve fit out of all of the spark gaps investigated, yielding 

an R2 value  0.983, this is illustrated in Figure 39. 

 Table 18.  Curve fit parameters for the first oscillations of current pulses measured 
with a spark gap distance of 3″, for the general model of 0( ) sin[ ]I t I tω φ= + . 

Experiment General Model 
Solution: 

0( ) sin[ ]I t I tω φ= +  

95% Confidence Bounds 
I0  
low 

I0  
high 

ω 
 low 

ω  
high 

Φ 
low 

Φ 
high 

1 7196.4sin[5.04 10 0.263]x t −  186.6 206.1 74.9 10×  75.2 10×  -0.34 -0.19 

2 7209.4sin[5.51 10 0.104]x t −  206.6 212.1 75.5 10×  75.6 10×
 

-0.13 -0.08 

3 7201.7sin[5.52 10 0.109]x t −  195.9 207.4 75.4 10×  75.6 10×  -0.15 -0.07 

4 7181.0sin[5.46 10 0.097]x t −  173.8 188.2 75.3 10×  75.7 10×
 

-0.16 0.04 

Mean 7197.1sin[5.38 10 0.143]x t −  190.7 203.5 75.2 10×  75.5 10×  -0.19 -0.08 
Std Dev 0I = 

12 
ω = 

2.3E6 
φ = 

0.08 
13.93 10.49 62.7 10×  62.0 10×

 
0.10 0.09 

Table 19.  Goodness of fit statistics for the first oscillation of current pulses 
measured with a spark gap distance of 3″. 

Experiment R2 SSE Adjusted R2 RMSE 

1 0.950 9803 0.944 17.78 

2 0.975 15760 0.974 10.69 

3 0.983 2723 0.982 9.86 

4 0.963 3761 0.961 12.03 
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Figure 39.  The best curve fit data was for experiment 3, and is for the spark gap of 
3″.  This curve fit has an R2 value of 0.983. 
 
 The 3″ spark gap resulted in the best R2 data over the 4 experiments. The average 

solution for the 3″ spark gap over all four experiments is shown in Figure 40, along with 

the low current amplitude data point given on experiment 4 and the high current 

amplitude data point given on experiment 2.  The averaged solution including the 

standard deviation is shown in Figure 41. 
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Figure 40.  Curve fit to the first oscillation of the current pulse for a spark gap of 3″ 
along with the low and high current amplitudes are shown. 
 

 
Figure 41.  Curve fit to the first oscillation of the current pulse for a spark gap of 3″ 
along with the standard deviations are shown. 
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Table 20.  Curve fit parameters for the first oscillations with a spark gap of 6″ for 
the general model of 0( ) sin[ ]I t I tω φ= + . 

Experiment General Model 
Solution: 

0( ) sin[ ]I t I tω φ= +  

95% Confidence Bounds 
I0  
low 

I0  
high 

ω 
 low 

ω  
high 

Φ low Φ 
high 

1 7272.9sin[9.24 10 0.052]x t −  252.9 292.8 78.7 10×  79.8 10×  -0.06 0.17 
2 7251.0sin[9.30 10 0.236]x t −  247.3 255 79.2 10×  79.4 10×  -0.26 -0.21 
3 7212.1sin[8.277 10 0.126]x t −  185.4 238.9 77.4 10×  79.1 10×  -0.31 -0.06 
4 7237.5sin[8.27 10 0.077]x t −  206.6 268.4 77.4 10×  79.1 10×  -0.27 0.12 

Mean 7243.45sin[8.77 10 0.123]x t −  223.1 263.8 78.2 10×  79.4 10×  -0.23 0.02 
Std Dev 0I =   

25.4 
ω =

65.8 10×  
φ = 

0.08 
32.49 22.8 68.9 10×  63.1 10×  0.11 0.17 

 
 

Table 21.  Goodness of fit statistics for the first oscillation with a spark gap of 6″. 

Date R2 SSE Adjusted R2 RMSE 

16/11/12 0.941 9471 0.941 25.13 

17/11/12 0.937 1.80E5 0.937 23.14 

29/11/12 0.871 2.21E4 0.855 36.04 

4/12/12 0.856 2.94E4 0.856 41.56 

 
 

Table 22.  Curve fit parameters for the first oscillations with a spark gap of 7″ for 
the general model of 0( ) sin[ ]I t I tω φ= + . 

Experiment General Model 
Solution: 

0( ) sin[ ]I t I tω φ= +  

95% Confidence Bounds 
I0  
low 

I0  
high 

ω 
 low 

ω  
high 

Φ 
low 

Φ 
high 

1 7311sin[9.24 10 0.116]x t −  286.4 335.5 78.7 10×  79.8 10×  -0.23 0.02 
2 7301sin[10.28 10 0.059]x t −  298.3 303.4 81.0 10×  81.1 10×  -0.07 0.05 
3 7271sin[10.91 10 0.009]x t −  263.4 278.7 81.1 10×  81.1 10×  -0.03 0.05 
4 7295sin[9.24 10 0.082]x t −  262.7 327.1 78.5 10×  81.0 10×  -0.24 0.08 

Mean 7294.5sin[9.92 10 0.067]x t −  277.7 311.2 79.5 10×  81.1 10×  -0.14 0.04 
Std Dev 0I = 

17 
ω =

68.24 10×  
φ = 

0.04 
17.6 25.6 71.1 10×  66.2 10×  0.11 0.03 
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Table 23.  Goodness of fit statistics for the first oscillation with a spark gap of 7″. 

Experiment R2 SSE Adjusted R2 RMSE 

1 0.943 1.44E4 0.935 31.02 

2 0.980 7.39E4 0.980 15.01 

3 0.992 893.5 0.991 8.63 

4 0.894 2.48E4 0.879 40.63 

 

Table 24.  Curve fit parameters for the first oscillations with a spark gap of 8″ for 
the general model of 0( ) sin[ ]I t I tω φ= + . 

Experiment General Model 
Solution: 

0( ) sin[ ]I t I tω φ= +  

95% Confidence Bounds 
I0  
low 

I0  
high 

ω 
 low 

ω  
high 

Φ 
low 

Φ 
high 

1 7326.5sin[8.73 10 0.057]x t −  298.0 354.7 78.1 10×  79.3 10×  -0.19 0.07 
2 7350.9sin[10.3 10 0.076]x t −  348.0 353.7 81.0 10×  81.0 10×  -0.09 -0.06 
3 7315.1sin[9.82 10 0.098]x t −  298.0 332.0 79.4 10×  81.0 10×  -0.18 -0.02 
4 7321.5sin[9.24 10 0.089]x t −  288.2 354.8 78.5 10×  81.0 10×  -0.24 0.06 

Mean 7328.5sin[9.52 10 0.080]x t −  308.1 348.8 79.1 10×  81.0 10×  -0.17 0.01 
Std Dev 0I = 

15.6 
ω =

66.8 10×  
φ =  
.02 

27.0 11.21 69.5 10×  64.7 10×  0.06 0.07 

 

Table 25.  Goodness of fit statistics for the first oscillation with a spark gap of 8″. 

Experiment R2 SSE Adjusted R2 RMSE 

1 0.930 2.17E4 0.921 36.8 

2 0.981 8.63E4 0.981 16.47 

3 0.972 6190 0.968 21.03 

4 0.903 2.66E4 0.890 42.08 
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Table 26.  Summary of the maximum current of the first pulse as a function of 
spark gap.  

Spark Gap(inches) Max Current Mean/Average 

(amps) 

Standard Deviation (amps) 

3 202.25 13.82 

6 273.43 23.05 

7 313.63 30.49 

8 354.23 22.10 

 

 
Table 27.  Summary of the average parameters for the first current oscillations as a 
function of spark gap distance.  

Spark 

Gap(inches) 

General Model 
Mean/Average 
Solution: 

0( ) sin[ ]I t I tω φ= +  

Standard Deviation 

I0 ω Φ 

3  7197.1sin[5.38 10 0.143]x t −  
0I =12 ω = 62.3 10×  φ =0.08 

6  7243.45sin[8.77 10 0.123]x t −  
0I =25.4 ω = 65.8 10×  φ =0.08 

7  7294.5sin[9.92 10 0.067]x t −  
0I =17 ω = 68.2 10×  φ =0.04 

8  7328.5sin[9.52 10 0.080]x t −  
0I =15.6 ω = 66.8 10×  φ =0.02 

 

3.6 Results of Added Circuit Resistance 
 
 As shown in Section 2.4, the overdamped or critically damped RLC circuit 

current waveform best fits the free-field MIL-STD 464 standard test pulse.  The critical 

resistance in damping the VDG system is the spark gap resistance Rs(t), as shown in 

Equation (15).  This controlling resistance has three independent variables.  They are the 

air density (before air breakdown), length of the spark gap, and the time-dependent 
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current of the spark gap.  It is this time dependent current that causes Rs(t) to decrease 

with time. 

 The current in the spark gap cannot be measured directly, and the air density in 

the VDG room cannot be easily modified, such as was done with gas pressure in [5].  

Thus, the best variable for achieving an overdamped RLC circuit in this research was to 

increase the spark gap resistance Rs(t), via the spark gap or increasing the circuit 

resistance.  

 The data in Section 3.5.4 showed that the mean current increased as a function of 

spark gap distance from 202 to 354 (A) as the spark gap length increased from 3 to 8″, as 

shown in Figure 38.  However, in all experiments the increased spark gap did not 

increase Rs(t) to the point of taking the VDG from the underdamped RLC circuit to 

overdamped.   

 A repeatable current was not obtained past 8″.  Larger spark gaps lead to erratic 

behavior owing to different spark paths/lengths, and eventually no strikes will occur.  It 

was found that to have a repeatable current waveform, the spark gap was limited to 8″.  

Strikes were measured up to 18″; however, those strikes only occurred once or twice 

before the strikes ceased altogether.  To bring the strikes back, a much smaller spark gap 

was needed.  The strikes past 9″ were never repeatable; therefore, the distances of 3, 6, 7 

and 8″ were used to characterize the direct current from the VDG.  At these distances, the 

VDG produced an underdamped waveform to the RLC circuit. 

 In an attempt to overdamp the VDG RLC circuit, ceramic resistors were added in 

series with the CVR, as shown in Figure 34.    The method was predicated upon the 

theoretical analysis of Section 2.4.  This section describes that in order to determine the 
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resistance needed to over damp the first oscillation in the current waveform is when 

𝑅2 > 4𝐿
𝐶� .  

 Since the first oscillation has a measured frequency of 8.56 MHz ± 0.37 MHz, 

for the spark gap of 3″ (53.8 MHz for angular frequency), and using a capacitance of 

45pF [6], as well as assuming the system is in resonance, the inductance was determined 

using 2

1L
Cω

= , yielding 9x10-6 H.  Solving for R, gives a value of 882 Ω or greater.  

Therefore, a 1 kΩ resistor was placed in series with the CVR.   

 The 1 kΩ resistor, however, caused an observable spark to jump past the resistor, 

obviously leading to high voltage build up just prior to the resistor.  Aside from reducing 

the effect of the resistor, it occasionally short circuited the oscilloscope causing it to cycle 

off.  When the oscilloscope did not short circuit, the measurements varied in amplitude 

and frequency with every strike.    Resistors ranging from 10 to 106 Ω were used, but 

none could be used without causing the breakdown of air around the resistor and thus 

would not overdamp the VDG.   

 Resistors, smaller than 1 kΩ, did produce measurable data, such as that for a 692 

Ω resistor, as shown in Figure 42.   However, in all cases, the second oscillation was 

measured to have a higher maximum current than the first. This was likely caused by 

constructive interference from a reflection caused by the placement of the resistor. The 

first peaks also had added wave features, as shown in Figure 43.     



     

78 

 

Figure 42.  Current as a function of time measured with a resistor of 692 Ω added in 
series with the CVR. 

 
Figure 43.  First oscillation of the current pulse measured with a resistor of 692 Ω 
added in series with the CVR. 
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CHAPTER 4 

CONCLUSIONS 

4.1 Confidence in the Equipment and CVR Location 
 
 The equipment used to measure the direct current of the VDG indicated that the 

aluminum shielded coaxial cables, CVR, and oscilloscope were functioning properly, and 

that they are capable of measuring the currents and current signals at frequencies 

expected of the VDG.  Losses in the lines and connections appeared to be minimal, but 

the effect on the outcome of the final waveforms appears to induce reflections that could 

not be removed. 

 The use of the RG-62 shielded coaxial cable that was terminated at 106 Ω at the 

oscilloscope and a 100 Ω shunt terminator gave the least noisy signal and produced the 

highest current amplitude, as shown in Table 12.  It was also shown in Table 12 that the 

signal noise was reduced when the CVR is connected at position A, as shown in Figure 

30, and when copper mesh clamps are used. This setup was used throughout all the 

repeatable experiments. 

4.2 VDG Experimental Setup   
 
 All experimental VDG discharge data produced a waveform with at least 3 FFT 

frequency components: 3, 7, 15 MHz ± 2 MHz. The primary frequency, at ~15MHz, is a 

result of the capacitance and inductance of the VDG resonating with the channel 

inductance [12].  The additional frequency components are created by electromagnetic 

interference and cable interference (inductance and capacitance.)   
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 It was found that placement of the 30′  RG-62 shielded coaxial cable, as shown in 

Figure 28, changed the current pulse by up to 117 (A).  In addition, the RG-62 shielded 

coaxial cable, and all power and ground cables had to be supported off the concrete floor 

so as to eliminate any ground current coupling. It was also shown that a poor CVR 

attachment can lead to added frequencies of oscillation in the current pulse.  In other 

words, the CVR connection, including the placement of the RG-62 cable, is critical in 

eliminating any additional impedance differences and in producing repeatable current 

strikes with the first oscillation having the maximum peak current. 

 

4.3 Analysis/Repeatability of the First Current Oscillations  
 

 Repeatable and reliable direct current amplitude and frequency were measured 

and found for only the first current oscillation.  Therefore, at this time EMP direct current 

survivability testing cannot be conducted by the VDG.     

 The VDG represents an underdamped RLC circuit that is controlled by the 

dielectric breakdown of air.  In an ideal RLC circuit, the VDG would produce a damped 

sine wave as modeled in Section 2.4.1.  It was found that with many manipulations the 

ideal could not be achieved. However, the first oscillation of the current pulse can be 

repeated to within a small statistical variance outlined in Tables 26 and 27 and could be 

used for initial EMP verification of whether subcomponents should be MIL-STD tested. 
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4.4 Added Resistance to Obtain a Damped Current Waveform 
 

Prior studies have shown that damping of the oscillations of a VDG is best 

controlled by raising the gas pressure [5].  However, it is not practicable under the current 

configuration.  Owing to the requirement for air breakdown, the spark gap was limited to 

8″ in these experiments; therefore, Rs(t) was not increased enough to attain the 

overdamped RLC circuit.   

The series resistance experiments resulted in direct current that was prone to 

jumping any added resistors.  Therefore, reliable and repeatable data could not be 

obtained through this method. 
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CHAPTER 5 

FUTURE WORK 

5.1 VDG System Improvements 
 
 The EMI found in the VDG room affected all the results for all experiments. The 

room is full of conductive materials that add to the electromagnetic mode of the VDG 

system.  Changing the room or the room environment is advisable.  This could be done 

by adding a Faraday cage around the VDG or adding electromagnetic absorbent material 

onto the walls.  

 To maximize the impedance matching of the spark gap, a strike plate should be 

constructed to equal the capacitance of the VDG dome.  This strike plate would then need 

to be supported far from the concrete floor in order to reduce the capacitance.  To further 

eliminate additional EMI caused by impedance miss-matches and connections, a 

permanent connection of the CVR should be made.  This could be done by soldering the 

CVR into a fixed location.   And finally, to eliminate current coupling with the RG-62 

cable a permanent non-conducting support structure or a permanent copper tubing to hold 

the coaxial cable should be emplaced. 

5.2 Follow-on Experiments 
 

Subcomponents that did not undergo direct current EMP testing could be 

preliminarily evaluated against the direct current produced by the VDG.  The VDG 

produces current pulses with frequency components that are spark gap distance 

dependent.  With the spark gap ranging from 3 to 8″ there was a current amplitude 

produced that ranged from 202 to 350 (A), as well as a frequency range of 8 to 15 MHz.  
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This initial evaluation would be to ensure the subcomponents meet or do not meet initial 

direct current EMP military standard requirements.  If they do not pass the VDG direct 

current evaluation the subcomponents could be recommend for MIL-STD testing.  For 

this evaluation to be validated the VDG would need to be setup and tested to make sure 

that the first current oscillation is the maximum peak for the full current pulse.  And 

finally, the VDG could be used to provide a quick analysis of suspected vulnerable 

components, as well as for EMP and static discharge education. 
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APPENDIX A– VDG Triboelectric Effect and Solution to DEQ 
 

VDG Triboelectric Effect 
 
 
 If used without the 20 kV voltage source, the VDG can takes advantage of the 

theory pertaining to charging by the triboelectric effect and induction if the belt material 

is lower on the triboelectric scale than the lower roller material.  An example is with a 

rubber belt and a plastic roller, then the belt will carry excess negative charge where it is 

in contact with the roller and the roller will carry excess positive charge, as shown in 

Figure 44.  Materials could also be chosen to invert these charges.  Since the belt surface 

area is far greater than the roller surface area, the surface charge density will be far 

greater on the roller than on the belt.   

 Acting through the belt, the strongly positive charged roller creates a strong 

electric field from the roller to the negatively charged metal comb.  The lesser negative 

charge density, on the inside of the belt, partially shields and reduces the dominant effects 

of the roller’s high density charge from the negatively charged comb.  At the same time, 

the metal comb with the tips of its tines very near to the lower roller is electrically 

continuous with ground.  This is shown in Figure 45. 
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Figure 44. Charge density is greater on the roller than the inside of belt. Adapted 
from [8]. 
 

 
Figure 45. High field strength ionizes the air gap to allow charge transport. Adapted 
from [8]. 
 

 

  The charge on the roller is much more concentrated than the charge on the 

belt. Because of this difference in charge concentration, the roller's electric field is much 
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stronger than the belt's at the location of the roller and lower comb assembly.  The strong 

positive charge from the roller begins to do two things: 

1. It attracts the electrons near the tips of the lower comb assembly. Metals are good 

conductors because they are basically positive atoms surrounded by movable 

electrons. The comb assembly has wire tips that are negatively charged because 

the electrons have moved to the tips of the comb. 

2. It begins to strip nearby air molecules of their electrons.  The VDG now has free 

electrons and positively charged atoms of air existing between the roller and the 

comb. The electrons are attracted to the roller and repelled from the comb tips 

while the positive atoms are repelled from the positively charged roller. 

The negatively charged electrons from the air molecules are drawn toward the positively 

charged roller, but the belt is in the way; therefore, the belt gets "coated" with the 

negative charge, which it then carries away from the roller. 

 As long as there is air between the lower roller and comb assembly, the VDG will 

continue to charge the belt. Theoretically, the VDG can continue to charge and is only 

limited by the volume of the dome/capacitor.   

 As soon as electrons accumulate on the belt it is negatively charged.  The 

electrons now roll toward the upper roller and upper comb assembly.  Since the upper 

roller is made of a material that will repel the charge on the belt, and the upper comb 

assembly is connected to the inside of the dome, the electrons on the belt move to the tips 

of the metal comb as they are repelled by the now negatively charged top roller. Once 

again the air breaks down between the comb and belt (just like the bottom roller), and the 

positive atomic nuclei of air are attracted to the roller, and at the same time, the free 
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electrons in the air move to the comb.  When a charged object touches the inside of the 

metal container, the container accepts the charge, leaving the object neutral. The excess 

charge then shows up on the outside surface of the dome, now making it a large 

capacitor.  It is through this effect that the VDG is able to achieve large voltage and 

electric field. 

 
 

Solutions to the RLC Differential Equation 
 
 
 The MIL-STD-464 is a single pulse (with a fast rise time, and an order of 

magnitude longer fall time), while the VDG gives an oscillating sinusoidal wave.  To 

better simulate a free field EMP pulse, the RLC circuit of the VDG needed to be 

overdamped or critically damped.  The solutions to the second-order linear differential 

equation with constant coefficients, as outlined for the RLC circuit, are summarized in 

Table 28 [18]. 

 

The RLC second order linear differential equation is given in its general form in Equation 

(26):   

 
2

2     0,d y dya b cy
dt dt

+ + =  (26) 

   

and has the characteristic equation of  Equation (27). 

 2   0ar br c+ + =  (27) 
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 This characteristic equation is a quadratic formula and gives rise to three different 

general solutions for the homogenous solution (yh) for the differential Equation (9).  

These solutions depend on the value of the discriminate(∆ =  𝑏2 −  4𝑎𝑐), where b equals 

R, α equals L, and c equals 1/C for the RLC circuit.  The solutions to these equations 

show that the overdamped or critically damped solutions are in the general form of MIL-

STD-464. 

  Since b equals the resistance R in the circuit, and it is squared, the resistance is 

the dominant factor in determining the discriminator and whether the solution is 

underdamped or overdamped.  A comparison of these three different solutions is shown 

in Figure 10 [18].  

 

Table 28. Solution to the second-order linear differential equation with constant 
coefficients is shown. Adapted from [18]. 

Case 1 
∆ > 0  

Real unequal roots: 

𝑟1, 𝑟2 =  
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Over damped motion: 
 

𝑦ℎ = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡 
Case 2 

∆= 0 
Real repeated root: 

𝑟 =
−𝑏
2𝑎

 

Critically damped motion: 
 

𝑦ℎ = 𝑐1𝑒𝑟𝑡 + 𝑐2𝑡𝑒𝑟𝑡 
Case 3 

∆< 0 
Complex conjugate roots: 
 

𝑟1, 𝑟2 =  𝛼 ± 𝛽𝑖 
 

𝛼 =  
𝑏

2𝑎
  , 𝛽 =  

√4𝑎𝑐 − 𝑏2

2𝑎
 

 
 

Under damped motion: 
 

𝑦ℎ = 𝑒𝛼𝑡(𝑐1𝑐𝑜𝑠𝛽𝑡 + 𝑐2𝑠𝑖𝑛𝛽𝑡) 
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APPENDIX B – Additional Equipment Confidence Experiments 
 
 
 Equipment Confident Experiments: 

 
 The Signal source was connected straight into the oscilloscope with an RG 62/U 

cable that was terminated with a 100 Ω shunt terminator.  This data shows that with the 

100 Ω shunt terminator VL is higher on the oscilloscope due to the fact that the 100 Ω 

shunt terminator in parallel with the 93 Ω cable has a total impedance of 48 Ω, and a 

constructive reflection is added to the VL.   
 

Table 29.  Voltage Load (VL) is higher when shunt terminators are used.  This is 
because of constructive impedance reflections. 

Signal Source 

(50 Ω impedance) 

Oscilloscope 

(Terminated at 1MΩ) with RG-

62 (93 Ω)  cable of 3ft length 

Oscilloscope 

(Terminated at 1M Ω) with RG-

62 (93 Ω) cable of 20 ft length 

Frequency  Voltage Frequency Voltage Frequency Voltage 

1 MHz 1 V 1 MHz 1.33V 1 MHz 1.33V 

1 MHz 5 V 1 MHz 6.68 V 1 MHz 6.60 V 

1 MHz 10 V 1 MHz 13.44 V 1 MHz 13.36 V 

1 MHz 5 V 1 MHz 6.68 V 1 MHz 6.60 V 

10 MHz 5 V 10 MHz 6.72 V 10 MHz 6.72 V 

15 MHz 5 V 15 MHz 6.88 V 15 MHz 6.52 V 

20 MHz 5 V 20 MHz 6.96 V 20 MHz 6.56 V 
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 With the CVR placed at position A it is shown that resonance is reached at 15 

MHz.  This is known because the voltage reaches a maximum at this frequency. 

 

Table 30.  When CVR is placed in position A resonance is approached around 15 
MHz, as maximum voltage is obtained.   

Signal Source 

(50 Ω impedance) 

With CVR 

Oscilloscope (Terminated at 

1MΩ and a 100 Ω shunt 

terminator placed in parallel)  

Frequency  Voltage Frequency Voltage 

1 MHz 5 V 1 MHz 6.8 mV 

1 MHz 10 V 1 MHz 11.2 mV 

10 MHz 5 V 10 MHz 13.6 mV 

11 MHz 5 V 10 MHz 14.4 mV 

12 MHz 5 V 12 MHz 7.8 mV 

13 MHz 5 V 13 MHz 9.6 mV 

14 MHz 5 V 14 MHz 23.0 mV 

15 MHz 5 V 15 MHz 32.0 mV 

16 MHz 5 V 16 MHz 24.0 mV 

17 MHz 5 V 17 MHz 16.0 mV 

18 MHz 5 V 18 MHz 16.0 mV 

19 MHz 5 V 19 MHz 7.6 mV 

20 MHz 5 V 20 MHz 6.2 mV 

 

 

 The experiment system was again set up by connecting the voltage source to the 

front of the strike plate using alligator clips and copper foil tape.  This time the CVR was 

attached near the very back of the strike plate.  The experiment was run to show how the 
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added impedance of the strike plate affects the experiment results.  Comparing this data 

to Table 12 it is shown that a better impedance match is made at position A then at the 

back of the strike plate.   

 When the actual VDG experiments were run it also showed that placing the CVR 

at the very back of the strike plate added additional high frequencies and the ability to 

reproduce the current form was almost impossible. Therefore, position A was again 

shown to be the cleaner CVR location. 

Table 31.  Experiment data with CVR placed at the very back of the strike plate. 

Signal Source 

(50 Ω impedance) 

Without CVR 

(The oscilloscope was 

terminated at 50 Ω, RG-62 

cables were used) 

With CVR 

(The oscilloscope was 

terminated at 50 Ω, RG-62 

cables were used) 

Frequency  Voltage Frequency Voltage Frequency Voltage 

1 MHz 1 V 1 MHz 0.8 V 1 MHz 0.04 A 

1 MHz 5 V 1 MHz 4.1 V 971 kHz 0.15 A 

1 MHz 10 V 1 MHz 8.9 V 1 MHz 0.30 A 

1 MHz 5 V 1 MHz 4.3 V 992 kHz 0.17 A 

10 MHz 5 V 10 MHz 2.6 V 10 MHz 0.11 A 

15 MHz 5 V 15 MHz 3.9 V 14.95MHz 0.12 A 

20 MHz 5 V 20 MHz 3.8 V 20 MHz 0.13 A 
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APPENDIX C – Goodness of Fit and Computer Codes  
 
 
Goodness of Fit and Mathematical Algorithm and MATLAB Codes Used: 
 
 

Goodness of Fit 
 

Sum of Squares Due to Error: 

  This statistic measures the total deviation of the response values from the fit to 

the response values. It is also called the summed square of residuals and is usually 

labeled as SSE, as shown in Equation (28). A value closer to 0 indicates a better fit.  

 

 

2

1
( )

n

i i i
i

SSE y yω
=

= −∑  (28) 

 

R-Square: 

  This statistic measures how successful the fit is in explaining the variation of the 

data. Put another way, R-square is the square of the correlation between the response 

values and the predicted response values. It is also called the square of the multiple 

correlation coefficient and the coefficient of multiple determination. 

R-square is defined as the ratio of the sum of squares of the regression (SSR) and the total 

sum of squares (SST). SSR is defined in Equation (29). 

 

2

1
( )

n

i i
i

SSR w y y
=

= −∑  (29) 

 

SST is also called the sum of squares about the mean, and is defined in Equation (30), 

 2

1
( ) ,

n

i i
i

SST y yω
=

= −∑  (30) 
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where SST SSR SSE= + . Given these definitions, R-square is expressed in Equation (31). 

 2 1SSR SSER
SST SST

= = −  (31) 

 

R-square can take on any value between 0 and 1, with a value closer to 1 indicating a 

better fit. For example, an R2 value of 0.8234 means that the fit explains 82.34% of the 

total variation in the data about the average. 

If you increase the number of fitted coefficients in your model, R-square might increase 

although the fit may not improve. To avoid this situation, you should use the degrees of 

freedom adjusted R-square statistic described below. 

Note that it is possible to get a negative R-square for equations that do not contain a 

constant term. If R-square is defined as the proportion of variance explained by the fit, 

and if the fit is actually worse than just fitting a horizontal line, then R-square is negative. 

In this case, R-square cannot be interpreted as the square of a correlation. 

 

Degrees of Freedom Adjusted R-Square: 

  This statistic uses the R-square statistic defined above, and adjusts it based on the 

residual degrees of freedom. The residual degrees of freedom is defined as the number of 

response values n  minus the number of fitted coefficients m estimated from the response 

values v n m= − where v indicates the number of independent pieces of information 

involving the n data points that are required to calculate the sum of squares. Note that if 

parameters are bounded and one or more of the estimates are at their bounds, then those 

estimates are regarded as fixed. The degree of freedom is increased by the number of 

such parameters. 

The adjusted R-square statistic is generally the best indicator of the fit quality when you 

add additional coefficients to your model, as shown in Equation (32): 
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 2 ( 1)adusted 1
( 1)

SSE nR
SST v

−
= −

−
 (32) 

 

 

The adjusted R-square statistic can take on any value less than or equal to 1, with a value 

closer to 1 indicating a better fit. 

 

Root Mean Squared Error: 

  This statistic is also known as the fit standard error and the standard error of the 

regression, as shown in Equation (33), 

 RMSE s MSE= = , (33) 

 

where MSE is the mean square error or the residual mean square, as shown in Equation 

(34): 

 SSEMSE
v

=  (34) 

 

A RMSE value closer to 0 indicates a better fit. 

 

 

MATLAB Codes: 
 

The Fast Fourier Transform (FFT) is an algorithm to compute the Discrete Fourier 
Transform (DFT) and its inverse.  The MATLAB code used for this is shown: 
 
clear  
Data=importdata('File Name for data set.xls') 
X=Data(:,1); 
Y=Data(:,2); 
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dt=mean(diff(X)); 
nyquist=1/(2*dt); 
n=length(Y); 
freq=(1:n/2)./(n/2).*nyquist; 
  
ffty=fft(Y); 
ffty=abs(ffty.^2); 
plot(freq,ffty(1:length(Y)/2)) 
 
Computer model for the iterative time dependent spark gap current: 
 
close all 
clear all 
clc 
want_to_save=true; 
  
%Variable to Change --- Maybe 
dt=1e-11;% seconds - - time steps 
tmax=1e-6; % seconds - - time max 
inch = 3; % inches - - variable Spark Gap distance changes other 
variables 
c =200*10^(-12); %Farads 45 from Leahy's work 
L = 370e-9;  %(1.4*10^(-9)/.03937)*(inch);%Henrys from Charlesworth 
Research 
ScaledAmplitude = 207; % from real data information to normalize from 
Spark Gap current to direct current 
  
t=0:dt:tmax;   % time start at 0 to tmax 
l = (.0254/1)*(inch);% convertion of spark gap distance from inches to 
meters 
V0 = (2.9*10^(6)*(.0254/1)*(inch));% V/m (m) - - air breakdown voltage 
divided by Spark Gap distance to get voltage 
rho = 1.225 ;%kg/m^3 for 1 atmosphere before break down 
%% 
  
It=0; % initial conditions at time zero 
  
Itdt=1e-9; % initial conditions at time zero - - can not divide by zero 
  
jj=0;  % initialize index 
  
h=waitbar(0); % to add the waitbar  :) 
res=zeros(size(t));  % initializing the array with zeros to same size 
as t 
Itval=res; % initializing Itval - same as res 
Itdtval=res; % initializing Itval - same as res 
for tt=t  % looping thru for steps of t 
    jj=jj+1; 
    waitbar(tt/tmax,h) 
     
    Itdt=Itdt+It^(2/3)*dt; % approximation of the integral - - the 
smaller the dt the smaller the error but longer the time - for 45pF we 
max out at 1E-11 
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    resistance=((7e-4*rho^(1/3)*l)./(Itdt)); % Spark Gap Resistance 
defined - - update for each iteration using the prevous iteration 
    w0=sqrt(1/(L*c)-(resistance/(2*L))^2);  % angular frequency defined 
    It=V0/(w0*L)*exp(-resistance/(2*L)*tt)*sin(w0*tt); % Time dependent 
current defined 
     
     
     
     
    res(jj)=resistance; % storing the array of resistance 
    Itval(jj)=It; % storing the current array 
    Itdtval(jj)=Itdt; % storing the integral values 
end 
  
  
close(h) % close the waitbar  :) 
  
%% 
% Plots of the figurs - - each defined below 
Scaled_Output=figure(1); 
hold on 
plot(t,real(Itval)/max(real(Itval))*ScaledAmplitude,'r') % 
Scaled/normalized current 
set(gcf,'position',[644 676 560 420]) 
  
  
figure(5) 
plot(t,real(Itval)) % current 
set(gcf,'position',[50 676 560 420]) 
  
figure(2) 
loglog(t/1e-9,real(res)); % resistance 
set(gcf,'position',[1235 676 560 420]) 
  
figure(3) 
for ii=2:length(Itdtval) 
    Integralerror(ii-1)=abs((Itdtval(ii)-Itdtval(ii-1))/Itdtval(ii)); 
end 
plot(Integralerror) 
set(gcf,'position',[50 99 560 420]) 
figure(4) 
plot(t,real(Itdtval)); % Current Integral for resistance 
set(gcf,'position',[644 99 560 420]) 
  
figure(1) 
  
  
  
if want_to_save 
uisave({'Itval','L','V0','c','dt','inch','l','rho','t'},'DataOut') 
end 
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Mathematica Codes 
 
The mathematica computer model used to manipulate data for a damped sin wave is 
shown: 
 

Identify to Mathematica the directory where data are stored. 

SetDirectory["L:\\Research\\ENP\\GNE Research\\EMP Research\\Kress\\MMA 

Curve Fitting"]; 

Import data and remove the extra dimension generated by Mathematica. 

plotData=Flatten[Import["16 Nov 2012 Full Pulse.xlsx","XLSX"],1]; 

Take a first look at the data. 

dataPlot=ListPlot[plotData,JoinedTrue,PlotRangeAll,PlotStyleRed,AxesLab

el{Time[s], Current[A]}] 

 

Now use the manipulate function to examine the data set.  Start by guessing a 

functional form, and plot the functional form over a range of fit parameters (Amplitude 

and wave number). 

 

Then, change the fit parameters to get the form to match the data set. 

2. 107 4. 107 6. 107 8. 107 1. 106
Times

200

100

100

200

CurrentA



     

98 

fGuess[A_,k_,_,t_]:=A - t Sin[k t] 

Manipulate[Plot[fGuess[A,k,,t],{t,0,Max[plotData[[All,1]]]},PlotRangeAll],{

A,50,500},{,106,108},{k,106.5,109}] 

 

Now set values for the fit parameters, based on what was found above, and plot 

the fit function over the range of x-values from the imported data. 

Afit=235; 

kfit=5.2 107; 

fit=5.0 106; 

tmin=Min[plotData[[All,1]]]; 

tmax=Max[plotData[[All,1]]]; 
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fitPlot=Plot[fGuess[Afit,kfit,fit,t],{t,tmin,tmax},PlotRangeAll,AxesLabel{Ti

me[s], Current[A]}] 

 

freq=N[kfit/(2)] 

8.27606×106 

Show both plots together. 

Show[fitPlot,dataPlot,AxesLabel{Time[s], Current[A]}] 

 

  

2. 107 4. 107 6. 107 8. 107 1. 106
Times

150

100

50

50

100

150

200

CurrentA

2. 107 4. 107 6. 107 8. 107 1. 106
Times

200

100

100

200

CurrentA
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